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The properties of semiflexible polymer brushes are studied by applying the classical limit of mean-field ap
proach for chains with marginal chain stiffness. Using the mean-spherical Gaussian model, the most probable 
configuration for semiflexible chains is obtained, which reduces to the parabolic brush of Milner et al. [Mac
romolecules 1988, 21, 2610] in the flexible limit. From this configuration, equilibrium brush height as well as 
interactions between semiflexible brushes are estimated.

Introduction

Polymer chains with one ends tethered to an interface or a 
surface with high attachment density form polymer 
brushes.1,2 The polymer brushes in solution, showing quite 
different properties from free polymer chains in that they 
exhibit deformed configuration even in equilibrium condi
tion due to the excluded volume effect, become a basic 
model for a variety of polymeric systems such as polymeric 
surfactants, stabilization of colloidal dispersions, and wet
ting properties of surfaces and adhesion. The unique struc
ture of the polymer brushes has thus motivated a number of 
experimental and theoretical studies. One of the most impor
tant applications of the polymer brushes is the colloid stab- 
lilization by end-tethered chains.3-5 When the coverage of 
end-tethered chains is low and poor solvent is used, solid 
colloid particles may flocculate but as the grafting density is 
increased and solvent quality is improved, the polymer 
brushes separate colloidal particles to a distance at which 
van der Waals interaction is too weak to keep the particles 
together due to the repulsive force between the brushes aris
ing from high osmotic pressure inside the brushes.

Pioneering work on polymer brushes was given by 
Alexander6 and de Gennes.7 Their equilibrium brush theory 
assuming uniformly stretched chains with a simple step func
tion profile is based upon a free energy balance argument. By 
balancing the osmotic pressure resulting from excluded volume 
interaction of the brushes with the elastic stretching forces of 
elongation favoring to have maximum configurational entropy, 
they obtained h ~ NcoolV3, f 〜N(g/伊 where h is brush 
height, f is the free energy of a chain in brush phase, N is the 
number of brush repeating units, c is the surface density, ^ is 
the excluded volume parameter and l is the statistical segment 
length. Their original work has prompted a large body of litera
ture dealing with different approaches such as the self-consis
tent field equation first developed by Dolan and Edwards,4 
scaling approach7 and more recently computer simulations.8-10 
Previous studies, however, mostly focused on flexible polymer 
brushes and few studies have reported on semiflexible polymer 
brushes.

Most real polymer chains possess inherent backbone rigid- 
ity.11-13 Polypeptides, deoxyribonucleic acid (DNA) in helical 

state, and liquid crystalline polymer (LCP) are well known 
examples of semiflexible chain. These semiflexible chains also 
have potential use in controlling surface or interfacial properties 
through increased brush height. Studies on the flexible chains 
are mainly based on the random flight statistics14-17 but the char
acteristic of the random flight chain is violated by semiflexibil
ity arising from hindrance to internal rotation and structural 
constraint. This implies that a large number of real polymer 
chains do not obey the simple statistics of random flight chain 
(i.e., flexible chain) and consequently other appropriate model 
is needed. Among a number of models presented for the semi
flexible chains, the most well-known model is the worm-like 
chain proposed by Kratky and Porod18 in which coarse graining 
is introduced to replace mathematically intractable discrete 
chains with continuous models. Several models for both flexi
ble and semiflexible chains are shown in Figure 1. On the 
other hand, Saito, Takahashi, and Yunoki (STY)13 have 
employed the Wiener type integral formulation to provide a 
functional integral representation for the worm-like chain. In 
present study, the classical limit mean-field equation for 
semiflexible polymer brushes is presented by employing a 
model based on the worm-like chain and the physical prop
erties predicted from the equation are discussed.

Theoretical Model for Semiflexible Polymer Brushes

In order to incorporate semiflexibility in polymer chains,

Figure 1. Various models for both flexible and semiflexible 
polymer chains; (a) Bead-Bond Model, (b) Semiflexible Persistent 
Chain Model and (c) Semiflexible Freely-Jointed Model.
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the Hamiltonian for flexible chains should be modified.
T ..... . E.。…L 3 L_g\2
In addition to the Wiener form &H =旗一2 J drl — \ ac-

i 2l 0 VdT
counting for the elastic energy of flexible chains, where § = 
1/kBT and ri is the position vector of a monomer on ith chain 
at a contour distance T along the chain, a curvature (bending) 
energy term which is the second derivative with respect to 
contour length is introduced to simulate the semiflexibility. 
This model can be easily extended to more generalized case 
by incorporating higher derivative terms.19

The classical model used to describe the configurational 
statistics of a semiflexible polymer is the wormlike chain 
defined by a function given below13:

Q = JnDrTexpI-2l佬刃0、써：d희⑴

where £ is the bending elastic constant with a dimension of 
energy per length and the notation JDri(t) denotes the func
tional integration over all trajectories of the chain, subject to 
finite chain extensibility constraint |dr・/d끼〃 = 1. Unfortu
nately, for a number of applications the wormlike chain is 
mathematically cumbersome due to the finite chain extensi
bility constraint \dri/dT | /l = 1. As a result, mean-spherical or 
spherical approximation20 is introduced to simplify calcula
tions with the model, yet still retaining the essence of semi
flexibility of polymer chains. This procedure is, however, 
analogous to employing the Gaussian model. Consequently, 
the following mean-spherical Gaussian model is used.

Q = Jn Dr(T) (2)

r 、exp] -z引帽\ -2i匯刃：써[若

1 0 ' k 丿

where the functional integral over ri(T) is now uncon
strained. To model the interactions between polymer brush

chains, the osmotic term §H° is intro-

duced, which usually includes anisotropic interactions as 
well as isotropic interactions between the brush chains.

The self-consistent field equation, which is essentially the 
Fokker-Planck type equation in the case of a single chain, 
could be obtained by minimizing the free energy §F = -lnQ, 
which in turn could be solved self-consistently through a 
propagator G19

\dr -2糸低 + luyr + ^G( r，"")=0 ⑶

where u = (dr/dT)/l, U is the dimensionless interaction 
potential between chain segments, and 阳 represents the 
chain stiffness which is inversely proportional to the flexibil
ity parameter (a) defined as a 〜L/尢-1 with L the contour 
length and A-1 the persistence length.

Most Probable Configuration and Physical 
Properties of Semiflexible Polymer Brushes

When we deal with long and stretched chains, the distribu
tion of chain configuration is sharply peaked around the 
most probable configuration (MPC), that is, one which mini
mizes the exponent of the partition function. In this work, we 
use the classical limit mean-field approach wherein fluctua
tions around the most probable path are neglected as poly
mer chains extend above their Gaussian random coil size. 
The semiflexible chains generally adopt more stretched con
figuration due to chain stiffness arising from molecular 
structures such as mesogenic groups along the liquid crystal
line polymer backbone and electronic delocalization of con
jugated polymer chains21 as well as isotropic interaction 
resulting from the repulsion between segments analogous to 
flexible polymer brushes. In the case of semiflexible poly
mer brushes, there also exist anisotropic interactions which 
are responsible for isotropic-nematic phase transition. How
ever, when we confine semiflexible brushes to a system with 
only marginal semiflexibility and in a moderately stretched 
regime, we can simply assume isotropic interactions, mean
ing that in the regime considered the order parameter, which 
is defined as S = 1/2〈 3cos 心-1〉representing the degree 
of anisotropic interactions arising from chain stiffness and 
becoming zero for flexible brushes, is almost constant and 
not of significance in the marginally semiflexible regime 
considered. By applying the finite chain extensibility through 
the spherical approximation and employing the Euler-Lagrange 
equation up to the second order, the most probable configura
tion for the semiflexible chains was obtained:

3kBTd2r (d4r\ , t\7TT 小
一厂丁3- £ 丁0 = WVU (4)

1 dT VdT丿

Without the interaction term (^bT V U), the equation is a 
fourth-order differential equation describing the bending of a 
homogeneous rigid rod.22,23 When we assume that each 
brush chain is end-tethered normal to the grafting surface, 
the facts that all the chains are grafted at the same surface 
and have the same polymerization index N simplify the 
problem. This means that we use the conventional equal 
time condition z = 0, (d키 dT)/l = -1 at the grafted end (t = N) 
and z = h, d，기dT = 0 for the free end (t = 0). Retaining only 
dominant terms, the trajectory becomes

z exp (入++(t 一 N))

1 八 一、, 씨 入-+1\ . “ ，一 “、
—-—exp (X+- T) + ---- ------  sm 入―+ T (5)

人+- 人++丿

1 ( 1 씨 人- +|、 … …、 .
+ (h +  ----- +1 -— - -； - I exp (-人++N)) cos 人-+ T

人+ -:人++ 人++丿

where A++ = -A+- = ((1/§£l + ((1/§£l)2+8B/§£l)1/2)/2)1/2,= 
i((-1/§£l + ((1/§£)아8B/§£)1/2)/2)1/2 with B = n/8N2, and h 
is the brush height. In the flexible brush limit where 阳 
approaches zero, z becomes hcos (N2n) which is the classi-
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Figure 2. Trajectories of a brush chain normal to a grafting surface 
with different degrees of chain rigidity (^£l). The solid line 
indicates the classical limit solution of completely flexible polymer 
brushes.

cal limit mean-field solution of flexible brushes as shown as 
a solid curve in Figure 2.24 For flexible polymer brushes (阳 
=0), the trajectory results in the parabolic density profile of 
Milner et al.24 while as chain stiffness is increased, the tra
jectory begins to deviate from the solid curve and asymptoti
cally approaches the diagonal line indicated by the long 
dashed line in Figure 2 corresponding to a chain trajectory of 
completely stretched chains. This behavior implies that as chain 
stiffness is increased, the conformation of brushes gradually 
changes from a parabolic density profile of completely flexible 
brushes to a step function density profile for completely 
stretched brushes, which is in good agreement with a previ
ous study of Wijmans et al.25 in which the self-consistent 
field (SCF) lattice model was employed. The free energy per 
chain is obtained from the partition function pF = -lnQ in 
general. In the classical limit, however, the free energy can 
be directly derived from the general free energy expression 

F ~£ 27 + 2l匯a서糸 ] by substitut-
i 1 0 I x 丿

ing the classical trajectory Eq. (5) into this expression. We 
also employed the equal time potential of the form U(z) = A- 
Bz2 with A(h) = Now/h+BhP/3 and B =招8N which is 
obtained from the equal time constraint meaning that all the 
chains are end grafted at the same surface and have the same 
polymerization index N24. The dominant contribution from the 
stiffness of chains, after dropping unimportant numerical coeffi
cients, becomes (囲)'就/Nl+O(阳) thus the total free energy 
obtained can be written as follows:

h' 心 7、1/2 h , 
一- -(闻)紡+ 
Nl Nl

(6)F - kBT

In the flexible brush limit (阳=0), the equilibrium brush 
height is obtained from minimization of the free energy with 
respect to brush height resulting in the relation h* 〜 N(。히2)1/3, 
which is the typical scaling relationship of flexible polymer 

brushes. When the semiflexibility of a brush chain is consid
ered (阳 > 0), the equilibrium brush height is also obtained 
from minimization of the free energy with respect to brush 
height leading to the relation h*/l = S+T, where S and T are

S = (쓰4N- + (&£l)3 〃/216

+ ((쓰*)2/1612 + 쓰oN (阳)372/4321)1 〃)1 〃 (7)

T = (쓰-N- + (阳)3〃/216

(- ((쓰oN)2/1612 + 쓰히N)(阳)3〃/4321)1口)1丛 (8)

Because we focus on the scaling relationships the numerical 
coefficients are not important and could be eliminated from the 
relations. In the regime where the excluded volume effect is 
more important than the semiflexibility of brush chains, the 
equilibrium brush height could be obtained in a simpler form by 
perturbatively expanding the equilibrium brush height neglect
ing the higher order terms than (p£l)1/2:

h*/1 - {^o/1)1 /3N + (阳)1 〃 (9)

This means that the semiflexibility of a brush chain still 
contributes to the equilibrium brush height as schematically 
shown in Figure 3. In the figure, the numerical coefficient is 
fixed to unity for convenience.

Recently, there have been several studies on the character
ization of polymer brushes grafted at solid-liquid interface.26,27 
Klein et al.26 investigated the reduction of frictional force 
between two solid surfaces bearing polymer brushes using a 
surface force apparatus. In their experiment, PS chains were 
end-grafted on mica surfaces in toluene which is a good sol
vent to PS. The persistent length of the worm-like chain 

Figure 3. Equilibrium brush height as a function of polymerization 
index N for different degrees of chain rigidity with 쓰히 1 = 0.1. The 
brush height should go through the origin regardless of the 
semiflexibility of a chain in a region close to zero polymerization 
index. However, each line with a different chain rigidity is drawn in 
a straight line to show the extrapolated intercept value.
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model (2九)-1, which is directly proportional to the chain 
stiffness, is 10.4 fbr PDMS chain at 25 oC ,while the (2 九)-1 for 
PS ranges from 13.2 to 18.8 at 27 oC depending on tacticity,28 
meaning that PS chain is stiffer than PDMS.

Figure 4 illustrates the brush height of end-tethered PS in 
toluene plotted against PS molecular weight. The linear rela
tionship between brush height and molecular weight is evi
dent and from the best fit, the brush height intercept was 
estimated to be 21, which is the evidence of semiflexibility 
contribution to the equilibrium brush height of the PS brushes 
in the limit of zero molecular weight.

When two particles are brought into a close distance, a 
strong repulsive force occurs due to the interaction between 
end-anchored brushes. In steric stabilization of colloidal par
ticles, the interaction between end-tethered brushes plays a 
crucial role in preventing flocculation in suspension. Using 
the total free energy

F /07二「— (으)2(h*)2 - (Bel)1 /2丄「으)h*
Fcom bT LN- lh*丿() (B ) NGh

+湖2监)

and the equilibrium brus height h* /l~ (^^ l)1 /3 N+ (pel)1 / 2 

the compressional free energy for semiflexible chains is 
given below, where we neglected the higher order terms than 
(Bel)1/2:

Fcom/kBT~c 1网^Y-) + C2(pel)1 /2^--l--'^ ]"2 一 C3

(啊槌쯰七 + N(으广;- (10)

where u = h/h*, h is the compressed brush height, h* is the

Figure 4. Brush height as a function of PS molecular weight. Data 
was taken from ref.25 The brush height scales as h 〜 N으1/3 in good 
solvent and the grafting density 으 is given by 1/Sm2 where N is the 
chain length, and SM is the mean inter-anchor spacing. The brush 
height, rescaled by SM2/3 to remove the grafting density effect, is 
needed in the ordinate.

Figure 5. Compressional free energy as a function of u (= h/h*) for 
different degrees of chain rigidity with cog/1 = 0.1 and N=100 where 
h is the compressed brush height and h* is the equilibrium brush 
height. The coefficients used in Eq. (10) are c1 = 0.5, c2 = 1, and c3 = 0.

equilibrium brush height and c1, c2, c3 are positive numerical 
constants.

Eq. (10) also shows the effect of chain rigidity on com- 
pressional free energy. The first and last terms on the right 
hand side of Eq. (10) represent contributions to compres- 
sional free energy resulting from conformational entropy of 
the chain and osmotic interactions, respectively, which is the 
well known form in the case of completely flexible brushes. 
The second and third terms containing Bel are the contribu
tions due to chain rigidity. While the second term causes the 
increase of free energy due to the bending energy of semi
flexible chains, the third term decreases the free energy by 
reducing osmotic interactions since the chain rigidity 
decreases the conformational entropy of the semiflexible

Figure 6. Compressional free energy as a function of u (= h/h*) for 
different degrees of chain rigidity with cdg/1 = 0.1 and N=100. The 
coefficients used in Eq. (10) are c1 = 0.5, c2 = 10, and c3 = 10.
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chains. Consequently, the actual feature of the resulting 
compressional free energy depends on relative magnitude of 
the two rigidity terms with opposite signs. If the decrease of 
conformatonal entropy due to semiflexibility of chains is 
negligible, the free energy will exhibit an increased value 
with increasing chain rigidity. When the third term becomes 
comparable with the second term in Eq. (10), the compres- 
sional free energy decreases with increasing chain rigidity 
due to the fact that reduced osmotic interactions between 
semiflexible chains are dominant. The two different cases 
for the relative magnitude of second and third terms in Eq. 
(10) are shown in Figures 5 and 6. In Figures 5 and 6, one 
can notice the abrupt increase of compressional free energy 
as the compression ratio u becomes smaller. This is due to 
the term 1/u originating from the excluded volume interac
tion between brush chains,24 where the compressed brush 
height h is one half of the separation distance (d) between 
grafting surfaces, h~d/2. This excluded volume interaction 
term yields the typical distance behavior of the free energy of 
compressed brush layers in the limit of strong compression as 
shown in Figures 5 and 6.

Summary

The equilibrium properties of semiflexible polymer brushes 
were presented using the classical limit of a mean-field theory 
for polymer chains with marginal stiffness. The continuous 
model based on worm-like chain was employed and the most 
probable path for semiflexible chains was analytically obtained, 
from which equilibrium brush height as well as interaction 
between semiflexible brushes was estimated.
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