DOI QR코드

DOI QR Code

Chemical Design of Highly Water-Soluble Ti, Nb and Ta Precursors for Multi-Component Oxides


Abstract

Novel citric acid based Ti, Nb and Ta precursors that are highly stable in the presence of water were developed. No alkoxides of Ti, Nb and Ta were utilized in the preparation, instead much less moisture-sensitive metallic Ti, NbCl5 and TaCl5 were chosen as starting chemicals for Ti, Nb and Ta, respectively. The feasibility of these chemicals as precursors is demonstrated in the powder synthesis of BaTi4O9, Y3NbO7 and LiTaO3. The water-resistant Ti precursor was employed as a new source of water-soluble Ti in the amorphous citrate method, and phase pure BaTi4O9 in powdered form was successfully synthesized at 800 ?. The Pechini-type polymerizable complex method using the water-resistant Nb and Ta precursors was applied to the synthesis of Y3NbO7 and LiTaO3, and both the powder materials in their pure form were successfully synthesized at reduced tempera-tures, viz. 500-700 ?. The remarkable retardation of hydrolysis of these water-resistant precursors is explained in terms of the partial charge model theory.

Keywords

References

  1. Chem. Rev. v.93 Chandler, C. D.;Roger, C.;Hampden-Smith, M. J.
  2. Mater. Chem. Phys. v.38 Lakeman, C. D. E.;Payne, D. A.
  3. J. Non-Cryst. Solids v.89 Doeuff, S.;Henry, M.;Sanchez, C.;Livage, J.
  4. Prog. Solid State Chem. v.18 Livage, J.;Henry, M.;Sanchez, C.
  5. J. Non-Cryst. Solids v.100 Sanchez, C.;Livage, J.;Henry, M.;Babonneau, F.
  6. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing Brinker, C. J.;Scherer, G.
  7. Materials Science Forum v.152;153 Livage, J.
  8. J. Am. Ceram. Soc. v.53 Marcilly, C.;Courty, P.;Delmon, B.
  9. U. S. Patent 3 330 697 Pechini, M. P.
  10. J. Sol Gel Sci. Tech. v.6 Kakihana, M.
  11. J. Alloys & Compounds v.256 Okubo, T.;Kakihana, M.
  12. Bull. Chem. Soc. Jpn. no.June Kakihana, M.;Yoshimura, M.
  13. J. Alloys and Compounds v.281 Szanics, J.;Okubo, T.;Kakihana, M.
  14. Mater. Res. Soc. Symp. Proc. v.275 Better Ceramics through Chemistry Ⅲ Phule, P. P.;Risbud, S. H.;Brinker, C. J.(ed.);Clark, D. E.(ed.); Ulrich, D. R.(ed.)
  15. J. Am. Ceram. Soc. v.72 Mhaisalkar, S. G.;Lee, W. E.;Readey, D. W.
  16. J. Am. Ceram. Soc. v.57 O'Bryan, Jr., H. M.;Thomson, Jr., J.;Ploudre, J. K.
  17. Proc. Chem. v.31 Lukaszewicz, K.
  18. J. Am. Ceram. Soc. v.38 Rase, D. E.;Roy, R.
  19. J. Am. Ceram. Soc. v.69 Ritter, J. J.;Roth, R. S.;Blendell, J. E.
  20. Appl. Phys. Lett. v.69 Kakihana, M.;Arima, M.;Sato, T.;Yoshida, K.;Yamashita, Y.;Yashima, M.;Yoshimura, M.
  21. T. Chem. Mater. v.11 Yamashita, Y.;Yoshida, K.;Kakihana, M.;Uchida, S.;Sato, T.
  22. J. Ceram. Soc. Jpn. v.100 Kobayashi, H.;Kuramochi, H.;Ogino, H.; Mori, T.;Yamamura, H.;Mitamura, T.
  23. J. Am. Ceram. Soc. v.81 Lee, J. H.;Yashima, M.;Kakihana, M.;Yoshimura, M.
  24. Selected Values of Thermodynamic Properties of Metals and Alloys Hultgren, R. R.;Orr, R. L.;Anderson, P. D.;Kelly, K. K.
  25. Chem. Mater. Szanics, J.;Kakihana, M.;Nakamura, Y.