The Synthesis of 6-Aryl-2,4-dioxoperhydro-1,3,5-triazines

Munawar Ali Munawar,* Azhar Masud Chaudhary, Makshoof Athar, Muhammad Siddiq, and Abdul Rauf
Department of Chemistry, Islamia University, Bahawalpur, Pakistan
Received December 15, 1998

The synthesis of a series of 6-aryl-2.4-dioxoperhydro-1,3,5-triazines by the condensation of biuret with aromatic aldehydes in trifloroacetic acid, is described.

Introduction

2.4-Dioxoperhydro-1.3,5-triazine and its derivatives exhibit antiviral activity against plant virus e.g., potato plant virus and tobacco plant virus. ${ }^{1 \sim 5}$ They are also found to be good activator for sodium perborate laundry bleach, ${ }^{2}$ moreover these bleaching agents are found to be physiologically, and ecologically harmless. ${ }^{\text {b }}$
Syntheses of 2,4-dioxoperhydrotriazines have been reported to a limited extent. ${ }^{1,2,6-9}$ Biginelli ${ }^{7}$ has reported that 6 -phen-yl-2,4-dioxoperhydro-1,3,5-triazine (3a) can be prepared by simply heating the benzaldehyde with biuret. Ostrogovich ${ }^{8}$ prepared the same compound from biuret and benzaldehyde in the presence of sulfuric acid. Etienne and Bonte ${ }^{9}$ have prepared a series of 6-substituted 2,4-dioxoperhydro-1,3,5triazines and their N -substituted derivatives by the condensation of biuret and its N -substituted derivatives with ketones and aldehydes.

Results and Discussion

In the present work a series of 6-aryl-2,4-dioxoperhydro-1,3,5-triazines (3a-3o) (Scheme 1) have been prepared from aromatic aldehydes and biuret. A mixture of appropriate aldehyde and biuret in trifluoroacetic acid on refluxing afforded the triazine. All the reactions proceeded smoothly and generally gave moderate to excellent yields ($45-90 \%$) (Table 1).
The condensation of an aldehyde with biuret (1:1) can possibly yield either an open chain N -arylidenebiuret (4) or the cyclized product, 6-aryl-2,4-dioxoperhydro-1,3,5-triazine (3). Chemical and Spectroscopic evidences provided conclusive proof for the cyclic structure (3) of the product. The open chain structure (4) was excluded on the basis that the products of the aromatic aldehydes with biuret remain unchanged. when reacted with excess of the aldehydes. Had

Scheme 1. $\mathrm{R}=$ (a) H ; (b) 2- NO_{2}; (c) $3-\mathrm{NO}_{2}$; (d) $4-\mathrm{NO}_{2}$; (e) 2- Br ; (f) $3-\mathrm{Br}$; (g) $4-\mathrm{Br}$; (h) $2-\mathrm{Cl}$; (i) $3-\mathrm{Cl}$; (j) $2-\mathrm{OH}$; (k) $3-\mathrm{OH}$; (l) $4-\mathrm{OH}$: (m) 2 -OMe; (n) 3 -OMe; (o) $4 . \mathrm{OMe}$.

Table 1.

Product	Melting point $\left({ }^{\circ} \mathrm{C}\right)$	Yield $(\%)$	Reflux time (hour)
3a (colourless)	$268-270$	80	5.5
$(272-273)^{7}$			
3b (dark brown)	$262-264$	30	3.0
3c (yellow)	$198-200$	84	3.0
3d (yellow)	$237-240$	55	3.0
3e (yellow)	$240-242$	70	5.5
3f (yellow)	$250-251$	46	5.5
3g (yellow)	$278-280$	72	5.5
3h (colourless)	$228-230$	78	5.5
3i (colourless)	$264-266$	44	5.5
3j (pink)	>360	92	5.5
3k (pink)	>360	91	5.5
3l (pink)	>360	63	5.5
3m (pink)	$220-221$	72	5.5
3n (brown)	>360	86	5.5
30 (orange)	$280-281$	45	5.5

the products been N-arylidenebiurets, it would have resulted in the formation N, N^{\prime}-diarylidenebiurets (6). The proton NMR spectra (Table 2) of the products were almost similar. However a slight shifting of methine proton peak, upfield or downfield due to the effect of substituent in the aromatic ring, has been observed. The methine proton peak in all the spectra appeared as singlet in the range of $\delta 5.5$ to $\delta 7.0$. The absence of coupling with NH proton is probably due to the rapid exange of NH proton with solvent (TFA). The NH protons peaks generally appeared along with aromatic protons. The IR spectra showed absorption band within the ranges of $3210-3412 \mathrm{~cm}^{-1}, 1674-1726 \mathrm{~cm}^{-1}$ and $1507-1623 \mathrm{~cm}^{-1}$ corresponding to $\mathrm{NH},-\mathrm{CO}$ and $-\mathrm{C}=\mathrm{C}-$, respectively. However the presence of tautomeric forms i.e. $\mathbf{3}^{\prime}$ could not be excluded.

The yields of the products (Table 1) are found to be dependent upon the position and nature of the substituents in aromatic ring. Generally electron withdrawing substituents

6

Table 2. Analytical and Spectral Data of the Products

Product	Found (\%)	Calculated (\%)	$\begin{aligned} & { }^{1} \mathrm{HNMR} \\ & \delta \text { (TFA) } \end{aligned}$	$\begin{gathered} \mathrm{IR} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$
3 a	$\begin{aligned} & \text { C, } 56.50 \\ & \text { H, } 4.64 \\ & \text { N. } 22.01 \end{aligned}$	$\begin{aligned} & \mathrm{C}, 56.54 \\ & \mathrm{H}, 4.74 \\ & \mathrm{~N} .21 .98 \end{aligned}$	$5.6(1 \mathrm{H}, \mathrm{s}, 6-H), 7.0(5 \mathrm{H}, \mathrm{m})$	$\begin{aligned} & 3376,3220(\mathrm{NH}), 1713,1674(\mathrm{CO}), 1587 . \\ & 1516(\mathrm{Ar}) \end{aligned}$
3b	C. 45.72 H, 3.49 N. 23.69	$\begin{aligned} & \text { C. } 45.77 \\ & \text { H, } 3.41 \\ & \mathrm{~N}, 23.72 \end{aligned}$	7.1 (1H, s, 6-H).8.6-9.3(7H, m, $4 \mathrm{Ar}-\mathrm{H}, 3 \mathrm{NH})$	$\begin{aligned} & 3397,3200(\mathrm{NH}), 1710(\mathrm{CO}), 1608,1540 \\ & \text { (Ar), 1350, } 1328\left(\mathrm{NO}_{2}\right) \end{aligned}$
3 c	C. 45.68 H. 3.42 N. 23.77	C. 45.77 H. 3.41 N. 23.72	$6.5(1 \mathrm{H}, \mathrm{s}, 6-H), 8.5-10.0\left(7 \mathrm{H}, \mathrm{m}, 4 \mathrm{Ar}^{-H, 3 . \mathrm{N} H)}\right.$	$\begin{aligned} & 3390,3200(\mathrm{NH}), 1711(\mathrm{CO}), 1601,1533 \\ & \left(\text { Ar). 1340.1321(} \mathrm{NO}_{2}\right) \end{aligned}$
3d	$\begin{aligned} & \text { C, } 45.71 \\ & \text { H, } 3.44 \\ & \text { N. } 23.71 \end{aligned}$	$\begin{aligned} & \text { C. } 45.77 \\ & \text { H, } 3.41 \\ & \text { N. } 23.72 \end{aligned}$	$\begin{aligned} & 7.0(1 \mathrm{H} . \mathrm{s}, 6-H), 8.6(3 \mathrm{H} . \mathrm{bs}, 3 \mathrm{NH}) 9.0-9.5(4 \mathrm{H}, \\ & \mathrm{m} .4 \mathrm{Ar}-H), \end{aligned}$	$\begin{aligned} & 3406,3220(\mathrm{NH}), 1713(\mathrm{CO}), 1611,1533 \\ & \text { (Ar), 1347, } 1329\left(\mathrm{NO}_{2}\right) \end{aligned}$
3 e	C. 40.10 H. 3.11 N, 15.61	C. 40.02 H, 2.99 N, 15.56	$6.2(1 \mathrm{H}, \mathrm{s}, 6 \cdot H), 7.0-7.5(7 \mathrm{H}, \mathrm{m} .4 \mathrm{Ar}-H .3 \mathrm{NH})$	$\begin{aligned} & 3400.3200(\mathrm{NH}) \cdot 1720(\mathrm{CO}) \cdot 1619.1590, \\ & 1580(\mathrm{Ar}) \end{aligned}$
3 f	$\begin{aligned} & \mathrm{C}, 40.01 \\ & \mathrm{H}, 2.98 \\ & \mathrm{~N} .15 .56 \end{aligned}$	C. 40.02 H, 2.99 N. 15.56	$6.0(1 \mathrm{H}, \mathrm{s}, 6-H), 7.7-8.4(7 \mathrm{H}, \mathrm{m}, 4 \mathrm{Ar}-\mathrm{H}, 3 \mathrm{~N} H)$	$\begin{aligned} & 3375,3200(\mathrm{NH}) .1720(\mathrm{CO}), 1608,1590 \\ & (\mathrm{Ar}) \end{aligned}$
3g	C. 39.98 H. 2.94 N, 15.64	C. 40.02 H. 2.99 N, 15.56	$5.9(1 \mathrm{H}, \mathrm{s} .6-H), 7.2-7.5(7 \mathrm{H}, \mathrm{m}, 4 \mathrm{Ar}-\mathrm{H}, 3 \mathrm{~N} H)$	$\begin{aligned} & 3375,3200(\mathrm{NH}), 1717(\mathrm{CO}), 1600,1580 \\ & (\mathrm{Ar}) \end{aligned}$
3h	C. 47.86 H. 3.57 N. 18.58	C. 47.91 H. 3.57 N. 18.62	$6.4(1 \mathrm{H}, \mathrm{s} .6-H), 7.5-8.0(7 \mathrm{H}, \mathrm{m}, 4 \mathrm{Ar}-H, 3 \mathrm{~N} H)$	$\begin{aligned} & 3400,3300(\mathrm{NH}) \cdot 1710(\mathrm{CO}) \cdot 1608.1585 \\ & (\mathrm{Ar}) \end{aligned}$
3 i	$\begin{aligned} & \mathrm{C}, 47.93 \\ & \text { H, } 3.55 \\ & \text { N. } 18.61 \end{aligned}$	$\begin{aligned} & \text { C, } 47.91 \\ & \text { H, } 3.57 \\ & \text { N. } 18.62 \end{aligned}$	6.3 (1H, s, 6-H), 7.0-8.0 (7H.m. $4 \mathrm{Ar}-\mathrm{H}, 3 \mathrm{NH})$	$\begin{aligned} & 3400,3333(\mathrm{NH}), 1708(\mathrm{CO}), 1601,1580 \\ & \text { (Ar) } \end{aligned}$
3 j	C. 52.17 H, 4.48 N. 20.21	$\begin{aligned} & \text { C, } 52.17 \\ & \text { H, } 4.38 \\ & \text { N. } 20.28 \end{aligned}$	$\begin{aligned} & 5.5(1 \mathrm{H} . \mathrm{s} .6-H) 6.8-7.2(4 \mathrm{H}, \mathrm{~m}, \mathrm{Ar}-\mathrm{H}), 7.5(3 \mathrm{H}, \\ & \text { bs. } 3 \mathrm{NH}), 8.7(1 \mathrm{H} . \mathrm{s}, \mathrm{Ar}-\mathrm{OH}) \end{aligned}$	3412 (NH.OH), 1716(CO), 1623(Ar)
3 k	$\begin{aligned} & C .52 .21 \\ & H, 4.41 \\ & \mathrm{~N}, 20.35 \end{aligned}$	C. 52.17 H. 4.38 N, 20.28	$\begin{aligned} & 5.4(1 \mathrm{H}, \mathrm{~s}, 6-H) 7.0-7.3(4 \mathrm{H}, \mathrm{~m}, \mathrm{Ar}-\mathrm{H}), 7.6(3 \mathrm{H} . \\ & \text { bs, } 3 \mathrm{~N} H), 8.5(1 \mathrm{H}, \mathrm{~s}, \mathrm{Ar}-\mathrm{OH}) \end{aligned}$	$\begin{aligned} & 3410(\mathrm{OH}), 3350,3270(\mathrm{NH}), 1701(\mathrm{CO}) \\ & 1615,1570(\mathrm{Ar}) \end{aligned}$
31	$\begin{aligned} & \text { C. } 52.22 \\ & \text { H. } 4.50 \\ & \mathrm{~N}, 20.31 \end{aligned}$	$\begin{aligned} & \text { C. } 52.17 \\ & \text { H. } 4.38 \\ & \mathrm{~N} .20 .28 \end{aligned}$	$\begin{aligned} & 5.8(1 \mathrm{H}, \mathrm{~s}, 6-H), 6.5-6.9(4 \mathrm{H}, \mathrm{~m}, 4 \mathrm{Ar}-\mathrm{H}), 7.2(4 \mathrm{H}, \\ & 1 \mathrm{OH}, 3 \mathrm{~N} H) \end{aligned}$	$3288(\mathrm{NH}, \mathrm{OH}), 1699(\mathrm{CO}), 1600,1567$ (Ar)
3m	C. 54.31 H. 4.98 N. 19.10	C. 54.29 H. 5.01 N. 19.00	$\begin{aligned} & 4.2(3 \mathrm{H}, \text { s. OMe }), 6.7(1 \mathrm{H}, \text { s. } 6-H), 7.0-7.8(4 \mathrm{H}, \mathrm{~m}, \\ & \mathrm{Ar}-H) .8 .5(3 \mathrm{H}, \mathrm{bs} .3 \mathrm{NH}) \end{aligned}$	$\begin{aligned} & 3330,3260(\mathrm{NH}), 1710(\mathrm{CO}), 1599,1570 \\ & (\mathrm{Ar}) \end{aligned}$
3 n	C. 54.24 H, 5.14 N, 18.98	C. 54.29 H. 5.01 N, 19.00	$\begin{aligned} & 4.0(3 \mathrm{H}, \mathrm{~s}, \mathrm{OMe}), 6.5(1 \mathrm{H}, \mathrm{~s}, 6-H) \cdot 7.2-7.8(7 \mathrm{H} . \mathrm{m} . \\ & 4 \mathrm{Ar}-H, 3 \mathrm{~N} H) \end{aligned}$	$\begin{aligned} & 3340,3270(\mathrm{NH}) \cdot 1711(\mathrm{CO}) \cdot 1600 \cdot 1580 \\ & \text { (Ar) } \end{aligned}$
30	$\begin{aligned} & \text { C. } 54,31 \\ & \text { H. } 5.11 \\ & \text { N. } 19.15 \end{aligned}$	C. 54.29 H. 5.01 N, 19.00	$\begin{aligned} & 4.0(3 \mathrm{H}, \mathrm{~s}, \mathrm{OMe}) \cdot 6.0(1 \mathrm{H}, \mathrm{~s}, 6-H), 7.0-7.5(7 \mathrm{H}, \mathrm{~m}, \\ & 4 \mathrm{Ar}-H, 3 \mathrm{~N} H) \end{aligned}$	$\begin{aligned} & 3340,3260(\mathrm{NH}), 1703(\mathrm{CO}), 1602,1591 \\ & (\mathrm{Ar}) \end{aligned}$

exert retarding effect while electon donating substituents accelerate the reaction probably due to the facile fonnation of the intermediate (5) (Scheme 2), which looks necessary to push the reaction in the forward direction in case of electron donating groups.

The reaction is found to be simple and can be coveniently used for the synthesis of 2,4-dioxoperhydro-1,3.5-triazines with moderate to excellent yieids as compare to the method reported in the literature. ${ }^{9}$

Experimental Section

Biuret and all aldehydes used were of analytical grade. Melting point were detenmined on Gallenkamp Melting Point Apparatus and were uncorrected. IR spectra were taken on a Hitachi 273-30 Infrared Spectrophotometer. Samples were taken as nujol mulls on sodium chloride plates. Proton NMR were recorded on a Hitachi, 60 MHz NMR Spectrophotometer, model R 24-B using tetramethylilane

1

$$
4
$$

$$
\Gamma+\quad+\quad
$$

5

3

4

Scheme 2
(TMS) as internal standard and were reported in $\mathrm{ppm}(\delta)$ relative to TMS. Microanalyses for carbon, nitrogen and hydrogen were performed on Perkin-Elemer 240 Elemental Analyzer.

Synthesis of 6-Aryl-2,4-dioxoperhydro-1,3,5-triazines
General Method. A mixture of biuret (10 mmol) and an aromatic aldehyde (10 mmol) in trifluoroacetic acid (5 mL)
was heated under reflux for 3 to 5.5 hours. The reaction mixture was then poured with constant stirring in cold water. After filteration, the crude products were recrystallized from 50% acetic acid (Table 1).

References

1. Schuster, G.; Winter, H.; Esser, G.; Sleinke, U.; Schmidt. H.: Kiessling, W.; Voigt, D.; Kochmann, W.; Sleinke, W. Ger (East), DD 233, 428 [Chem. Abstr. 1986, 105. 74399v].
2. Schmidt. H. Wiss, Z. Tech. Hochsch. "Carlschorlemmer" Leuna-Merseburg. 1986, 28(5), 579 [Chem. Abstr. 1987, 106, 198152z].
3. Schuster, G. Z. Phytopathol. 1983, 106(3), 262 [Chem. Abstr. 1983. 99, 34415y].
4. Schuster, G.; Ulbricht. H. Z. Planzen Krankh and Planzenschutz, 1985, 92(l), 27 [Chem. Abstr. 1985, 103, 94631r].
5. Nuhn, P.; Kulge, S.; Schuster, G. Ger (East) DD 241, 187 [Chem. Abstr. 1987, 107, 54180e].
6. W. Beckhaus, W.; Kiessling. W.: Schmidt, H.; Voigt, D. Chem. Tech. (Leipzig). 1988, 40(11), 423 [Chem. Abstr. 1989, /1/0, 10099t].
7. Biginelli, P. Gazz. Chim. Ital. 1894, 24, 291.
8. Ostrogovich, A. Gazz. Chim. Ital. 1909, 39, 540.
9. Etienne, A.; Bonte, B. Bull. Soc. Chim. (Fr.) 1975, 5-6, 1419 [Chem. Abstr. 1976, 84, 31009y].
