DOI QR코드

DOI QR Code

Crystallization of Forsterite Xerogel under Carbon Dioxide: A New Crystalline Material Synthesized by Homogeneous Distribution of Carbonaceous Component into Forsterite Xerogel

  • Published : 1999.05.20

Abstract

By heating the magnesiumsilicate (Mg2SiO4:forsterite) xerogel in carbon dioxide, carbonaceous component was intentionally introduced into the amorphous solid precursor. Carbon was introduced homogeneously as unidentate carbonate. Upon being heated at 800 。C in carbon dioxide, the xerogel which had homogeneously distributed carbonaceous component in it crystallized into a single phase product of a new crystalline material, which had approximate composition of Mg8Si4Ol8C. The powder X-ray diffraction pattern of the new crystalline material did not match with any known crystalline compound registered in the powder diffraction file. Crystallization from amorphous xeroget to the new crystalline phase occurred in a very narrow range of temperature, from 750 。C to 850 。C in carbon dioxide, or in dty oxygen. Upon being heated above 850 。C, carbonaceous component was expelled from the product, accompanied by irreversible transition from the new crystalline material to forsterite.

Keywords

References

  1. Sol-Gel Science-The Physics and Chemistry of Sol-Gel Processing Brinker, C. J.;Scherer, G. W.
  2. Solid State Chemistry and Its Application West, A. R.
  3. Chem. Mater. v.4 Park, D. G.;Burlitch, J. M.
  4. Sol-Gel Science-The Physics and Chemistry of Sol-Gel Processing Brinker, C. J.;Scherer, G. W.
  5. Solids v.86 Russo, R. E.;Hunt, A. J.
  6. Bull. Korean Chem. Soc. v.19 no.5 Kang, J.;Park, S. H.;Kwon, H. Y.;Park, D. G.;Kim, S. S.;Kweon, H.-J.;Nam, S. S.
  7. Chem. Mater. v.3 Burlitch, J. M.;Beeman, M. L.;Riley, B.;Kohlstedt, D. L.
  8. Philos. Mag. v.12 Brindley, G. W.;Hayami, R.
  9. Mater. Lett. v.10 no.9 Kazakos, A.;Komarneni, S.;Roy, R.
  10. Progress in Solid State Chemistry v.18 Livage, J.;Henry, M.;Sanchez C
  11. Rock-Forming Minerals Vol.1-Orthosilicates Deer, W. A.;Howie, R. A.;Zussman, J.
  12. Chem. Mater. v.5 Park, D. G.;Burlitch, J. M.;Geray, R. F.;Dieckmann, R.;Barber, D. B.;Pollock, C. R.
  13. Bull. Korean Chem. Soc. Park, D. G.;Higuchi, M.;Dieckmann, R.;Burlitch, J. M.
  14. Treor (calculation program) Werner, P.
  15. The Siloxane Bond Voronkov, M. G.;Mileshkevich, V. P.;Yuzhelevski, Y. A.
  16. Chem. Mater. v.5 Yeager, K. E.;Burlitch, J. M.;Loehr, T. M.
  17. The study on the effect of the xerogel morphology on the structural evolution during heat-treatment is on our pursue
  18. Chem. Mater. v.6 Park, D. G.;Duchamp, J. C.;Duncan, T. M.;Burlitch, J. M.
  19. Spectrochimica Acta v.19 Tarte, P.
  20. Spectrochimica Acta v.29A Paques-Ledent, M. T.;Tarte, P.
  21. Powder Diffraction File McClune, W. F.(ed.)
  22. Sol-Gel Science-The Physics and Chemistry of Sol-Gel Processing Brinker, C. J.;Scherer, G. W.
  23. Chem. Mater. v.3 Millikan, J.;Keller, T. M.;Baronavski, A. P.;McElvany, S. W.;Callahan, J. H.;Nelson, H. H.
  24. Trans. Faraday Soc. v.63 Evans, J. V.;Whateley, T. L.
  25. J. Chem. Soc. (A) Gregg, S. J.;Ramsay, J. D.
  26. J. Crystal Growth v.75 Freund, F.
  27. Phys. Chem. Minerals v.15 Freund, F.
  28. J. Am. Ceram. Soc. v.77 no.1 Park, D. G.;Martin, M. H. E.;Ober, C. K.;Burlitch, J. M.
  29. From many unpublished circumstantial evidences obtained by authors: will be described in separate article