Synthesis of 1,1-Diheteroaryl Ethylenes by a Tandem Appel's Dehydration/Thermal Rearrangement Methodology

Kee-Jung Lee,* Youl Her, and Jong-Gab Jun*
Department of Industrial Chemistry, Hanvang University, Seoul 133-791, Korea
*Department of Chemistry. Hallym University. Chunchon 200-702, Korea
Received Jamary 22,1999

Abstract

The hydrazones of 2-acetylfuran, 2-acetylthiophene, and 2-acetylpyrrole, were allowed to react with S-methylthioacetimidate hydroiodide (8) to give azinoureas $\mathbf{1 0}$, and the reaction of $\mathbf{1 0}$ with Appel's dehydration conditions (tripheny/phosphine/carbon tetrachloride/triethylamine) led to the corresponding azinocarbodimides $\mathbf{1 1}$, which underwent thermal rearrangement under the reaction conditions to give 1,1-diheteroaryl ethylenes 13 .

Introduction

Vinyl derivatives of five-membered heterocyclic aromatic compounds such as furan, thiophene, and pyrrole appear to be attractive substrates as dienes in the Diels-Alder reaction.' The requisite 2 -vinylfuran could be prepared by decarboxylation of furylacrylic acid, ${ }^{2}$ and 2 -vinylthiophene was prepared by dehydration of 2-thienylethanol ${ }^{5}$ and 2-vinylpyrrole could be prepared wia a Wittig reaction from formylpyrroles. ${ }^{4}$

We recently described a new route to 1,2,4-triazole fused heterocycles such as 5,10-dihydro-1,2,4-triazole[5,1-b] quinazoline $3,{ }^{5} 7 \mathrm{H}$-imidazo $[1,2,-b][1,2,4]$ triazole $4,{ }^{6}$ and especially monocyclic N - α-styryl-5-(phenylamino)-I,2,4-triazole 5^{7} wia thermal rearrangement of azinocarbodiimide 2 , which was obtained from the corresponding urea 1 using Appel's dehydration method $\left(\mathrm{Ph}_{3} \mathrm{P} / \mathrm{CCl}_{1} / \mathrm{Et}_{3} \mathrm{~N}\right)^{8}$ (Scheme 1).

With our continued interest in the reactions of azine-substituted heterocumulenes to prepare triazole ring systems, we chose to examine the reactions of 2 -acetylfuran, 2 -acetylthiophene, and 2-acetylpyrrole 1-ureidoethylidenehydrazones 10 with Appel's reagent to see which of the $\mathbf{1 3}$ or $\mathbf{1 4}$ would be the major product, because either the methyl group or five-membered heterocyclic aromatic ring can participate in the ring forming step (Scheme 2).

Results and Discussion

The starting compounds, 2-acetylfuran I-aminoethylidenehydrazone (9a), 2-acetylthiophene 1-aminoethylidenehydraone

6,7,9	X	10,11,13	X	Y	10,11,13	X	Y	10,11,13	X	Y
a	\bigcirc	a_{1}	0	11	b_{1}	S	E [c_{1}	NIL	[[
b	S	i_{1}	()	Cl	b_{2}	S	Cl	c:	NE [Cl
c	N] $]$	a,3	()	Me()	b_{3}	S	Me()	c_{3}	NE [Me()

Scheme 2
(9b), and 2-acetylpyrrole 1-aminoethylidenehydrazone (9c) were obtained by the reaction of known S-methylthioacetimidate hydroiodide (8) ${ }^{9}$ with 2-acetylfuran hydrazone (7a), 2acetylthiophene hydrazone (7 b), and 2 -acetylpyrrole hydrazone (7 c) in methanol at reflux temperature in $78-88 \%$ yield, respectively. The ureas 10 were produced by the reactions of hydrazones 9 with aryl isocyanates in dichloromethane at room temperature in $86-98 \%$ yield. Although thin layer chromatography (tlc) showed one spot (silica gel, ethyl ace-tate-hexane. 1: I), 'H NMR spectrum showed a mixture of two isomers ${ }^{10}$ and the ratio based on ${ }^{1} \mathrm{H}$ NMR peak of NH protons were 2.0-2.6: I for the furylureas 10 $\mathrm{a}_{1}-\mathbf{a}_{3}$. 4.4-22: I for the thienylureas $\mathbf{1 0 b} \mathbf{b}_{1}-\mathbf{b}_{3}$, and $1.3-2.1: I$ for the pyrrolylureas $\mathbf{1 0} \mathbf{c}_{1}-\mathbf{c}_{3}$. Treatment of ureas $\mathbf{1 0}$ with triphenylphosphine, carbon tetrachloride, and triethylamine in dichloromethane at reflux temperature for $6-9 \mathrm{~h}$ smoothly afforded

Scheme 3
the 1-(1 -heteroaryl)-5-(N-substituted amino)-1,2,4-triazoles 13 as a major product. The transformation may have occurred via a proton abstraction from the methyl group ${ }^{7}$ by the exocyclic nitrogen anion in the resonance structure $\mathbf{1 2 b}$. I, 2,4Triazole fused heterocycle 14 was not found at all. Presumably the small contribution of resonance form 12c having destruction of aromatic ring prohibited production of 14.

Instead, guanidines 15 and azine 16 were isolated as a minor product in the case of furyl- and thienylureas $\mathbf{1 0} \mathbf{a}_{1}-\mathbf{b}_{\mathbf{3}}$ and pyrrolylureas $\mathbf{1 0} \mathbf{c}_{1}-\mathbf{c}_{\mathbf{3}}$. respectively. The probable mechanism for the formation of $\mathbf{1 5}$ and $\mathbf{1 6}$ is shown in Scheme 3. The reaction of the presumed intermediate, azinocarbodiimides 11 , with hydrazone 7 gave guanidines 15 and the reaction of hydrazone with 2-acetylpyrrole afforded azine 16, which were obtainable by the partial hydrolysis of ureas under the Appel's conditions. The reason why the furyl- and thienylureas $10 a_{1}-b_{3}$ produce only the guanidine derivatives 15 and pyrrolylureas $10 c_{1}-c_{3}$ produce only the azine $\mathbf{1 6}$ is not clear yet.

In summary, we have worked out a simple method for the synthesis of 1,1-diheteroaryl ethylenes 13 from azinoureas 10. Further studies into the preparation of other heterocycles for use as dienes in Diels-Alder reaction are underway.

Experimental Section

All reagents and solvents were reagent grade or were purilied by standard methods before use and the reactions were routinely carried out under an inert atmosphere. Silica gel 60 (70-230 mesh ASTM) used for column chromatography was supplied by E. Merck. Analytical thin layer chromatography (tle) was performed on silica gel with fluorescent indicator coated on aluminium sheets. Melting points were taken using an Electrothermal melting point apparatus and are uncorrected. Microanalyses were oblained using a Carlo Erba EA 1180 element analyzer. The ' II and ${ }^{15} \mathrm{C}$ NMR spectra were measured on a Gemini 300 spectrometer. All chemical shifts are reported in parts per million (δ) relative to tetramethylsilane.
The S-methylthioacetimidate hydroiodide (8) was prepared following the literature procedure. ${ }^{9}$

2-Acetylfuran hydrazone (7a). A solution of 2-acetylfu$\operatorname{ran}(6,4.40 \mathrm{~g}, 40 \mathrm{mmol})$ and hydrazine monohydrate (8.01 g. 160 mmol) in methanol (40 mL) was stirred at reflux temperature for 1 h . After cooling, the solution was concentrated to dryness, and the residual material was dissolved in water, and extracted with dichloromethane ($50 \mathrm{~mL} \times 2$). The organic layer was separated, dried with magnesium sulfate, concentrated to dryness, and crystallized from petroleum ether to give the product $7 \mathbf{a}$; yield $4.02 \mathrm{~g}(81 \%) ; \mathrm{mp} 48-50^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.38$ (br s. $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.39 (dd, $1 \mathrm{H}, J-3.3, J-0.9$, aromatic), $6.48(\mathrm{~d}, 1 \mathrm{H}, J-3.3$, aromatic), 7.39 (d, IH, J-0.9, aromatic). Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 58.05$: H, 6.50 ; N, 22.57. Found: C, 58.22 ; H , 6.66; N, 22.77.

2-Acetylthiophene hydrazone (7b). 2-Acetylthiophene hydrazone (7b) was prepared in 96% yield from 2-acetylthiophene ($\mathbf{6 b}$) for 1 h by the aforementioned procedure, mp $68-69{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.23$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.97-7.2 (m .3 H , aromatic). Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}: \mathrm{C}, 51.39: \mathrm{H}, 5.75 ; \mathrm{N}, 19.98 ; \mathrm{S}, 22.87$. Found: C , 51.45; H, 5.63; N,20.27; S, 22.45.

2-Acetylpyrrole hydrazone (7c). 2-Acetylpytrole hydrazone (7c) was prepared in 95% yield from 2-acetylpyrrole for 1 h by the aforementioned procedure, $\mathrm{mp} 85-87{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCly): $\delta 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.17$ (m, IH, aromatic) , 6.32 and 6.75 (s , each 1 H , aromatic), 9.45 (br s, $1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3}: \mathrm{C}, 58.51 ; \mathrm{H}, 7.37$; N, 34.12. Found: C. $58.84 ;$ H, 7.75; N, 34.07.

2-Acetylfuran 1-aminoethylidenehydrazone (9a). To a solution of S-methylthioacetimidate hydroiodide $(8)(8.68 \mathrm{~g}$, 48 mmol) in methanol (150 mL) was added 2-acetylfuran hydrazone ($7 \mathrm{a}, 4.96 \mathrm{~g}, 40 \mathrm{mmol}$) and this solution was stirred at reflux temperature for 0.5 h . After cooling, the solution was concentrated to dryness, and the residual material was dissolved in dichloromethane (300 mL) and washed with 10% sodium hydrogen carbonate solution (200 mL). The organic layer was separated, dried with magnesium sulfate, concentrated to dryness, and crystallized from ethyl acctate-petroleum ether to give the product 9a; yield 5.74 g $(87 \%): m p 74-76^{\circ} \mathrm{C} ;{ }^{1} \mathrm{I}$ NMR (CDCl_{3}): $\delta 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.34 ($\mathrm{s}, 3 \mathrm{HI}, \mathrm{ClI}_{3}$), 5.42 (br s, 2]I, NH_{2}), 6.45 ($\mathrm{m}, 1 \mathrm{H}$, aromatic), 6.74 (d. 111, aromatic), 7.47 (s. 1 H , aromatic). Anal. Calcd. for $\mathrm{C}_{8} \mathrm{I}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 58.16$; 11. 6.71: N, 25.44. Found: C, $58.02 ; 11,6.35 ;$ N. 25.65.

2-Acetylthiophene $\mathbf{1 - a m i n o e t h y l i d e n e h y d r a z o n e ~ (~} 9 \mathrm{~b}$). 2Acelylthiophene 1-aminocthylidenehydrazone (9b) was prepared in 78% yield from 2-acetylthiophene hydrazone (7 b) for 0.5 h by the alorementioned procedure, mp $76-78{ }^{\circ} \mathrm{C}$: 1 HI NMR (CDCl_{3}): $\delta 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.34$ (br s, 2 $\mathrm{IH}_{3}, \mathrm{NH}_{2}$), 6.97-7.29 (m, 3I , aromatic). Anal. Calcd. for $\mathrm{C}_{8} \mathrm{II}_{11} \mathrm{~N}_{3} \mathrm{~S}: \mathrm{C}, 53.01$; $\mathrm{H}, 6.12$; N, 23.18; S, 17.69. Found: C, 52.69; I1, 6.47; N. 23.06; S, 17.32 .

2-Acetylpyrrole 1-aminoethylidenehydrazone (9c). 2-Acetylpyrrole 1 -aminoethylidenchydrazone (9 c) was prepar-ed in 88% yield from 2-acelylpyrrole hydrazone (7e) for 0.5 h by the aforementioned procedure, mp $148-149{ }^{\circ} \mathrm{C}$: ${ }^{\prime} \mathrm{I} 1 \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 2.02\left(\mathrm{~s}, 311, \mathrm{CH}_{3}\right), 2.33\left(\mathrm{~s}, 31 \mathrm{I}, \mathrm{Cl}_{3}\right), 5.28(\mathrm{br} \mathrm{s}$,

Table 1. I-Ureidoethy lidenehydrazones 10 Prepared

Compound	Yield (\%)	$\operatorname{mp}_{(\mathrm{CO})}$					Analyses (\%) Calcd/(Found)				Ratiof ${ }^{\text {d }}$
			Two $\mathrm{CH}_{3}{ }^{\text {b }}$	aromatic ${ }^{\text {c }}$	Two $\mathrm{NH}^{\text {b }}$	others	C	H	N	S	
1091	88	190-192	$\begin{gathered} 2.27,2.35 \\ (2.30,2.43) \end{gathered}$	6.62-7.85	$\begin{aligned} & 9.67,11.61 \\ & (9.14,9.86) \end{aligned}$		$\begin{gathered} 63.36 \\ (63.56) \end{gathered}$	$\begin{gathered} 5.67 \\ (5.88) \end{gathered}$	$\begin{gathered} 19.71 \\ (19.77) \end{gathered}$		2.3/1
$10 \mathrm{a}_{2}$	91	197-199	$\begin{gathered} 2.26,2.34 \\ (2.30,2.43) \end{gathered}$	662-7.85	$\begin{gathered} 9.74,11.69 \\ (9.15,10.00) \end{gathered}$		$\begin{gathered} 56.52 \\ (56.51) \end{gathered}$	$\begin{gathered} 4.74 \\ (4.89) \end{gathered}$	$\begin{gathered} 17.58 \\ (17.54) \end{gathered}$		2.01
$10 \mathrm{a}_{3}$	91	183-185	$\begin{aligned} & 2.27,2.34 \\ & (2.31,2.44) \end{aligned}$	6.62-7.84	$\begin{aligned} & 9.61,11.50 \\ & (9.10 .9 .67) \end{aligned}$	$3.74(\mathrm{OCH})$	$\begin{aligned} & 61.13 \\ & (61.33) \end{aligned}$	$\begin{gathered} 5.77 \\ (6.12) \end{gathered}$	$\begin{gathered} 17.83 \\ (17.98) \end{gathered}$		$2.6 / 1$
$10 \mathrm{~b}_{1}$	86	195-196	$\begin{gathered} 2.26 .2 .45 \\ (2.40 .2 .42) \end{gathered}$	7.02-7.68	$\begin{aligned} & 9.68,11.58 \\ & (8.91,9.86) \end{aligned}$		$\begin{gathered} 59.97 \\ (60.04) \end{gathered}$	$\begin{gathered} 5.37 \\ (5.36) \end{gathered}$	$\begin{gathered} 18.65 \\ (18.68) \end{gathered}$	$\begin{gathered} 10.67 \\ (10.23) \end{gathered}$	4.5/1
$10 \mathrm{~b}_{2}$	98	206-208	$\begin{gathered} 2.31 .2 .50 \\ (2.46 .2 .48) \end{gathered}$	7.17-7.68	$\begin{gathered} 982,11.73 \\ (8.99,10.07) \end{gathered}$		$\begin{gathered} 53.80 \\ (53.42) \end{gathered}$	$\begin{gathered} 4.52 \\ (4.55) \end{gathered}$	$\begin{gathered} 16.73 \\ (16.35) \end{gathered}$	$\begin{gathered} 9.58 \\ (9.25) \end{gathered}$	4.4/1
10 b 3	95	197-200	$\begin{gathered} 2.27 .2 .45 \\ (2.41 .2 .43) \end{gathered}$	6.93-7.64	$\begin{aligned} & 9.66,11.49 \\ & (8.87,9.73) \end{aligned}$	$3.76\left(\mathrm{OCH}_{3}\right)$	$\begin{gathered} 58.16 \\ (58.17) \end{gathered}$	$\begin{gathered} 5.49 \\ (5.54) \end{gathered}$	$\begin{gathered} 16.96 \\ (16.90) \end{gathered}$	$\begin{gathered} 9.71 \\ (9 .+2) \end{gathered}$	$22 / 1$
$10 c_{1}$	93	196-197	$\begin{gathered} 2.31 .2 .31 \\ (2.28 .2 .40) \end{gathered}$	$\begin{aligned} & 6.13-6.18,6.60- \\ & 6.64,6.91-7.55 \end{aligned}$	$\begin{aligned} & 9.50,11.75 \\ & (9.30,9.54) \end{aligned}$	11.15 (NHI)	$\begin{gathered} 63.58 \\ (63.50) \end{gathered}$	$\begin{gathered} 6.05 \\ (6.42) \end{gathered}$	$\begin{gathered} 2+.71 \\ (25,00) \end{gathered}$		$1.7 / 1$
$10 c_{2}$	87	197-199	$\begin{aligned} & 2.31 .2 .31 \\ & (2.27 .2 .40) \end{aligned}$	$\begin{aligned} & 6.13-6.18,6.61- \\ & 6.64,6.92-7.59 \end{aligned}$	$\begin{aligned} & 9.57,11.84 \\ & (9.46,9.57) \end{aligned}$	11.16 (N1I)	$\begin{gathered} 56.69 \\ (56.92) \end{gathered}$	$\begin{gathered} 5.08 \\ (5.35) \end{gathered}$	$\begin{gathered} 22.04 \\ (22.3+) \end{gathered}$		1.3/1
$10 c_{3}$	86	189-190	$\begin{gathered} 2.29,2.30 \\ (2.27,2.39) \end{gathered}$	$\begin{aligned} & 6.11-6.18,6.60- \\ & 6.63,6.88-7.46 \end{aligned}$	$\begin{aligned} & 9.44,11.60 \\ & (9.11,9.49) \end{aligned}$	$\begin{aligned} & 11.15(\mathrm{NH}) \\ & 3.73(\mathrm{OCH}) \end{aligned}$	$\begin{gathered} 61.32 \\ (61.56) \end{gathered}$	$\begin{gathered} 6.11 \\ (6.42) \end{gathered}$	$\begin{gathered} 22.35 \\ (22.73) \end{gathered}$		2.1/1

"Parentheses ralues are minor compounds. "All singlets. ${ }^{\text {c }}$ Values are both isomers. " Ratios based on 300 MHz. 'II NMR of NII proton.
$\left.2 \mathrm{H} . \mathrm{NH}_{2}\right) .6,20$ (s. 1 H . aromatic). 6.51 (d. 1 H . aromatic). 6.79 (s. IH. aromatic). 9.78 (br s. IH. NH). Anal. Calcd. Cor $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4}$: C. 58.51 : H. 7.37: N. 34.12. Found: C. 58.18 : H. 7.75: N. 34.19.

2-Acetylfuran 1-urcidoethỵlidenchydrazones 10:tarab, 2-Acetylthiophene 1-ureidoethylidenehydrazones $10 \mathrm{~b}_{1}-\mathrm{b}_{3}$, and 2Acetylpyrrole 1-urcidoethylidenehydrazones $10 \mathrm{c}_{1}-\mathrm{c}_{3}$; General Procedure. To a stirred solution of 1 -aminocthylidenchydrazone $9(20 \mathrm{mmol})$ in dichloromethanc (50 mL) was added
isocyanate (22 mmol) at room temperature. After stirring for 0.5 h at ambient temperature. the precipitated solid was separated by filtration. washed with ether and dried in vacuo to give 10 (Table 1).
3-Methyl-1-(1-furylethenyl)-5-(N-substituted amino)-1,2,4-triazoles $13 \mathrm{a}_{1}-\mathrm{c}_{3}, 3$-Methyl-1-(1-thienylethenyl)-5-(N substituted amino)-1,2,t-triazoles $13 \mathrm{~b}_{1}-\mathrm{b}_{3}$, and 3-Methyl-1-(1-pyrmolylethenyl)-5-(N-substituted amino)-1,2,+-triazoes $13 \mathrm{c}_{1}-\mathrm{c}_{3}$; General Procedure. To a stirred suspension of the

Table 2. 1,1-Diheteroaryl Fthylenes 13 Prepared

Compound	Reaction Time (h)	Yicld n (\%)	$\begin{gathered} \mathrm{Mp} \\ \left(\mathrm{CO}^{\mathrm{C}}\right) \end{gathered}$	'II NMR (CLDCl_{3}) δ					Analyses (\%) Caled./(Found)			
				$\mathrm{ClH}_{3}{ }^{\text {b }}$	$=\mathrm{CiH}_{2}{ }^{\text {b }}$	N $\mathrm{I}{ }^{\text {b }}$	aromatic ${ }^{\text {c }}$	others ${ }^{\text {b }}$	C	II	N	S
$1.3 a_{1}$	6	63	119-121	2.36	$\begin{aligned} & 5.39, \\ & 5.91 \end{aligned}$	6.43	$\begin{aligned} & 6.29-6.30 .641-6.43 \\ & 6.97-7.02 .7 .29-7.49 \end{aligned}$		$\begin{gathered} 67.65 \\ (67.45) \end{gathered}$	$\begin{gathered} 5.30 \\ 5.61! \end{gathered}$	$\begin{gathered} 21.04 \\ (21.11) \end{gathered}$	
$1.3 a_{2}$	6	83	116-118	2.34	$\begin{aligned} & 5.36 \\ & 5.88 \end{aligned}$	6.53	$\begin{gathered} 6.27-6.29 .6 .41-6.42 . \\ 7.20-7.48 \end{gathered}$		$\begin{gathered} 59.90 \\ (60.16) \end{gathered}$	$\begin{gathered} 4.36 \\ (4.59) \end{gathered}$	$\begin{gathered} 18.63 \\ (18.81) \end{gathered}$	
13a;	7	76	107-109	2.31	$\begin{aligned} & 5.35 \\ & 5.84 \end{aligned}$	6.49	$\begin{aligned} & 6.28-6.29,6.40-6.41 \\ & 680-6.83,7.34-7.4 . \end{aligned}$	$3.74(\mathrm{OCH})$	$\begin{gathered} 64.85 \\ (65.19) \end{gathered}$	$\begin{gathered} 5.44 \\ (5.77) \end{gathered}$	$\begin{gathered} 18.91 \\ (18.86) \end{gathered}$	
1.3b,	8	58	108-110	2.39	$\begin{aligned} & 5.42 \\ & 5.76 \end{aligned}$	6.24	7.00-7.45		$\begin{aligned} & 63.81 \\ & (63.58) \end{aligned}$	$\begin{gathered} 5.00 \\ (5.39) \end{gathered}$	$\begin{gathered} 19.84 \\ (19.45) \end{gathered}$	$\begin{gathered} 11.36 \\ (11.78) \end{gathered}$
13b=	8	60	99-100	2.39	$\begin{aligned} & 5.42 \\ & 5.76 \end{aligned}$	6.23	7.02-7.41		$\begin{gathered} 56.86 \\ (57.14) \end{gathered}$	$\begin{gathered} 4.14 \\ (4.27) \end{gathered}$	$\begin{gathered} 17.69 \\ (17.35) \end{gathered}$	$\begin{aligned} & 10.12 \\ & (9.85) \end{aligned}$
$1.3 \mathrm{~b}_{3}$	7	55	107-109	2.36	$\begin{aligned} & 5.41, \\ & 5.74 \end{aligned}$	6.10	6.84-7.35	$3.78(0 \mathrm{CH})$	$\begin{gathered} 61.51 \\ (61.40) \end{gathered}$	$\begin{gathered} 5.16 \\ (5.40) \end{gathered}$	$\begin{gathered} 17.94 \\ (17.55) \end{gathered}$	$\begin{gathered} 10.26 \\ (10.01) \end{gathered}$
$13 c_{1}$	8	68	195-197	2.31	$\begin{aligned} & 5.21, \\ & 5.42 \end{aligned}$	6.49	$\begin{gathered} 6.14^{b}, 6.23-6.26 \\ 6.80-6.81,6.95-7.32 \end{gathered}$	9.88(NII)	$\begin{gathered} 67.90 \\ (68.10) \end{gathered}$	$\begin{gathered} 5.70 \\ (6.01) \end{gathered}$	$\begin{gathered} 26.40 \\ (26.06) \end{gathered}$	
$13 c_{2}$	9	41	198-199	2.31	$\begin{gathered} 5.22 \\ 5.45 \end{gathered}$	6.51	$\begin{aligned} & 6.26^{b}, 6.27-6.28 \\ & 6.86^{b}, 7.19-7.30 \end{aligned}$	9.61 (NII)	$\begin{gathered} 60.10 \\ (60.25) \end{gathered}$	$\begin{gathered} 4.71 \\ (4.35) \end{gathered}$	$\begin{gathered} 23.37 \\ (23.71) \end{gathered}$	
$13 c_{3}$	7	73	192-194	2.31	$\begin{aligned} & 5.21 \\ & 5.45 \end{aligned}$	6.50	$\begin{gathered} 6.08^{b}, 6.23-6.26 \\ 6.89-6.83,7.23-7.26 \end{gathered}$	$\begin{gathered} 3.76\left(\mathrm{OCII}_{3}\right)^{\prime} \\ 9.57(\mathrm{NII}) \end{gathered}$	$\begin{gathered} 65.06 \\ (64.78) \end{gathered}$	$\begin{gathered} 5.80 \\ (6.15) \end{gathered}$	$\begin{gathered} 23.72 \\ (23.41) \end{gathered}$	

${ }^{4}$ Yield of pure isolated product. ${ }^{\text {b }}$ All singlets. ${ }^{\text {c }}$ Multiplets.

Table 3. Guanidines 15 Prepared

Compound	Reaction 'Lime (17)	Yield ${ }^{a}$ (\%)	$\begin{aligned} & \mathrm{Mp} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) δ				Analyses (\%) Calcel/(tound)			
				three Cl1 ${ }_{3}{ }^{\text {b }}$	aromatic ${ }^{\text {c }}$	two NH ${ }^{\text {h }}$	others ${ }^{\text {/ }}$	C	H	N	S
$15{ }_{1}$	6	2	161-163	$2.43(611), 2.44$	6.48-7.76	$9.15,11.35$		$\begin{gathered} 64.60 \\ (64.58) \end{gathered}$	$\begin{gathered} 5.68 \\ (6.03) \end{gathered}$	$\begin{gathered} 21.52 \\ (21.27) \end{gathered}$	
$15 \mathrm{a}_{2}$	6	7	188-189	$2.40(6 \mathrm{H}), 2.43$	6.47-7.70	$9.11,11.40$		$\begin{gathered} 59.36 \\ (58.98) \end{gathered}$	$\begin{gathered} 4.98 \\ (5.23) \end{gathered}$	$\begin{gathered} 19.78 \\ (19.43) \end{gathered}$	
$15 \mathrm{a}_{3}$	7	3	167-169	$2.41(6 \mathrm{H}) .2 .44$	6.47-7.67	9.13 .11 .20	$3.81\left(\mathrm{OCH}_{3}\right)$	$\begin{gathered} 62.84 \\ (62.51) \end{gathered}$	$\begin{gathered} 5.75 \\ (5.72) \end{gathered}$	$\begin{gathered} 19.99 \\ (19.65) \end{gathered}$	
$15{ }^{1}$	8	8	178-180	$2.42,2.51(6 \mathrm{H})$	703-7.75	9.11 .11 .30		$\begin{gathered} 59.69 \\ (60.02) \end{gathered}$	$\begin{gathered} 5.25 \\ (5.59) \end{gathered}$	$\begin{gathered} 19.88 \\ (19.53) \end{gathered}$	$\begin{gathered} 15.17 \\ (14.80) \end{gathered}$
$15 b_{2}$	8	3	203-205	$2.41,2.48(6 \mathrm{H})$	7.04-7.69	9.07 .11 .37		$\begin{gathered} 55.19 \\ (54.79) \end{gathered}$	$\begin{gathered} 4.63 \\ (4.67) \end{gathered}$	$\begin{gathered} 18.39 \\ (18.03) \end{gathered}$	$\begin{gathered} 14.03 \\ (14.12) \end{gathered}$
$15 b_{3}$	7	6	192-194	$2.42,2.49(6 \mathrm{H})$	6.88-7.67	9.10 .11 .17	3.81()$\left.^{(O C H}\right)$	$\begin{gathered} 56.39 \\ (56.12) \end{gathered}$	$\begin{gathered} 5.16 \\ (5.30) \end{gathered}$	$\begin{gathered} 17.93 \\ (18.12) \end{gathered}$	$\begin{gathered} 13.68 \\ (13.60) \end{gathered}$

${ }^{14}$ Yield of pure isolated product. ${ }^{\circ}$ All singlets. " Multiplets.

Table $4{ }^{13} \mathrm{C}$ NMR Data of 1,1-Diheteroaryl F.thylenes $\mathbf{1 3}$

urca $10(3.0 \mathrm{mmol})$ in dichloromethanc (30 mL) was added triphenylphosphine (1.18 g. 4.5 mmol). carbon tetrachloride (1.16 mL .12 mmol) and tricthylamine (0.63 mL .4 .5 mmol) and the mixture was heated to reflux temperature for the time indicated in Table 2. After cooling to room temperature the reaction mixture was partitioned between water and dichloromethane ($15 \mathrm{~mL} \times 2$) and combine each other. and the solvent was removed after drying over magnesium sulfate. The residue was chromatographed on silica gel column and eluted with hexane-ethyl acetate $4: 1$ to give 13 as a white solid after crystallization from petroleum ether (Table 2 and Table 4).

In the case of furyl-. and thienylureas 10a $\mathbf{a}_{1}-\mathbf{b}_{\mathbf{3}}$. guanidine 15 was eluted first during chromatography, and in the case of pyrrolylureas $10 \mathbf{c}_{1}-\mathbf{c}_{3}$, all azine 16 was obtained first during chromatography in 2.2 and 6% yields, respectively; mp 205$206{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.32$ (s. $3 \mathrm{H}, \mathrm{CH}_{3}$), 6.26 (s. 1 H. aromatic), 6.59 (d. $J=1.7 .1 \mathrm{H}$, aromatic). $6.90(\mathrm{~s} .1 \mathrm{H}$, aromatic). 9.37 (s. $1 \mathrm{H}, \mathrm{NH}$). Anal. Calcd. For $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{4}:$ C. 67. 26: H. 6.59: N. 26.15 . Found: C. 67.31 : H. 6.86: N. 26.05.

Acknowledgment. The authors wish to acknowledge the financial support of Hallym Academy of Sciences. Hallym University and Hanyang University, made in the program year of 1998.

References

1. (a) Noland, W. E.: Lee, C. K.: Bae, S. K.: Chung, B. Y: I lalm, C. S.: Kim, K. J. J. Ofg. Chem. 1983, 48, 2488 and references cited therein. (b) Jones, R. $\triangle:$ Marriott, M. T. P.: Rosenthal, W. P:: Arques, J. S. J. Org. Chem. 1980. 45 . 4515
2. (a) Andreeva. I. V: Koten, M. M. Thut Ohshathei Khim 1957. 27. 671: (. A. 1957. 5), 16409e (h) I.evi, T:.: Nicholls, R. V. V. Ind. Eng. Chem. 1958, 50, 1005, ('. A. 1958. 52. 18269 f
3. Andreeva I. V.: Koton. M. M. Doklady Akad Nauk SSSR. 1956, 110, $75 . C .1 .1957 .51 .5039 b$.
4. Jones, R. A.: Lindner, J. A. Aust J. Chem. 1965. 18. 875.
5. Lee, K. -I.: Kim. S. HI: Kim, S: Park, II.: Cho. Y. R.: Chung, B. Y.: Schweizer E. E. Synhesis 1994, 1057.
6. Lee, K. -J.: Song, D. -I I.: Kim, D. -J.: Park, S. -W. J. Heterocychic (hem. 1996, 33. 1877.
7. (a) I.ce, K, -T.: I.ce, Y. -S; Song: D. -H. Bull. Korean (hem. Soc: 1995, /6, 1037. (h) T ©, K. -J.: Kim, D. -W.J. Heterogclic (hem. 1997, 34, 1301
8. Appel. R.: Kleinstuck, R.: 7iehn, K. D. Chem. Ber: 1971, 104. 1335
9. Bredereck, H: Gompper, R.: Selz, H. (hem Ber: 1957, 90, 1837.
10. Two isomers were not determined.
