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The flux operator which has been introduced by Miller!?
has following form in one dimension:
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where x» is the position at which the flux is measured. Cal-
culation of thermal rate constant, k(T). either by the flux-
flux autocorrelation function method” or by the gquantum
transition state theory (QTST)"* requires evaluation of the
flux < E|F(x»)|E" > between any two continuum states |E >
and |E’ > with energies £ and E’ respectively. Thermal rate
constants by the flux-flux autocorrelation method in princi-
ple are known to be independent of the position of the divid-
ing surface xi because the dyvnamics of a process is kept
followed until the change is completed.'- In practical appli-
cations. however. Rom ¢f ¢/.* has shown that k(T) by the
method depends on the position of x.. This does also apply
to the rate constants by QTST. which is regarded as the short
time approximation of the flux-flux antocorrelation method.?
since the barrier recrossing is not taken into account. Deter-
mination of the minimum flux swrface is thus frequently
sought in actual calculations. In this work. we determine the
position of the dividing surface for minimum flux.

In order to determine xi» for minimum flux between two
states. we need following conditions;
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where ' denotes differentiation with respect to xq. Define

Wer(x;) as below:
”L‘L“ (X)) =vhp (Xu)wlg_r (X ) —W*p (X )y, (X)) 3)

and Egs. (2a) and (2b) become as follows respectively:
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Eq. (4a) vields following condition for x;, of minimum flux
for two states with different energies / and /",
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which shows that il the ratio—————is constant for any
“I-‘E(x 0)

E at certain xq. then this point may be the position for
minimum (lux. [ncquality in Eq. (4b) is satisficd for any
finite xu since al x,— teo. (d'/dx? )| W[ becomes zcro
as y(xy) —e0 duc to the canccllallot ol' the first term by
the sccond term. For finite xiy,. (x,)~ e } kx"ydx” and &(x)
<k since  k=/2mE/h is the wave veetor where V(x) =0,
Then the sccond term would be (£-£ % & el AGa) DIy
which is greater than 2m o/ h(F-E gy |* and y.(x) sal-
isfics Eq. (4b). Therelore a finite xy which meets Eq. (4a)
will be the position of minimum [lux,

We apply Eq. (4a) for a given potential V(x) to find oul x;.
To do this. we consider two cascs where a) V(x) is symmet-
ric: and b) V(x) is not with respect o x.

a) symmetric V{x). Sincc the parily operalor commutes
with the Hamiltoman of a system with symmetric V(x). four
cigensolutions such as y.(+x) and w".(£y) arc possible for a
given E. Among these. only two solutions are lincarly inde-
pendent and the following relations hold between them:

Yol =X )= 2y (X) (6a)
YE-X)= 2y (X) (6b)

where Eq. (6a) represents the defimite parity of the cigen-
functions. Defimite parity functions satisfyv the condition of
Eq. (5) smce |y* from these functions is cven with
respect L0 Xmax. the position of barmer maximum. and
d/dxalyr () 3m. Cquals to (. However these functions yicld
Wi of Eq. (3) 10 be 0 al Xpmax which is trivial. On the con-
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trary. [y~ from functions of Eq. (6b) mects the condition of
Eq. (3) because [wel* is even with respeet 10 Xiya while the
flux from these lunctions 1s not equal to O at this point.
These [unctions also satisfy Eq. (4b) for condition of the
minimum flux according to the argument staied above.
Therefore xmax 1S @ minimum flux surface. Aty —+ee. both
dsdx |W,|° and (,f/ai\jlWEEﬁ’ become zero while W
docs not as the asymptotic solutions behave like €%
Accordingly xy — *es may be inflection points. The result
shows why the position of barricr maximum is ofien chosen
as the dividing surface for symmetric sysicms.?

b) nonsymmetric V(x). Eigenfunctions for nonsymmetric
systems do not havc definitc paritics and the position of bar-
ricr maximum may not be a minimum {lux surface in gen-
cral. However. for V(x) with a slight asvmmetry. the
cigenfunctions posscss approximate paritics and X, would

Notes

be a minimum flux surface for this systcm. For svstems with
V(x) of a strong asvmmetry. Xpyax will not be a minimum flux
point while xi, —+e arc inflection points which was shown
numerically.* The analvsis mav be oxtended to higher
dimensions since the flux operator can be expressed approx-
imaicly in an appropriate onc dimensional form.
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