DOI QR코드

DOI QR Code

Chemical Poisoning of Ni/MgO Catalyst by Alkali Carbonate Vapor in the Steam Reforming Reaction of DIR-MCFC

  • Published : 1999.12.20

Abstract

Chemical poisoning of Ni/MgO catalyst was induced by hot alkali carbonate vapor in molten carbonate fuel cell (MCFC), and the poisoned (or contaminated) catalyst was characterized by TPR/TPO, FTIR, and XRD analysis. Carbonate electrolytes such as K and Li were transferred to the catalyst during DIR-MCFC operation at 650 ℃. The deposition of alkali species on the catalyst consequently led to physical blocking on catalytic active sites and structural deformation by chemical poisoning. TPR/TPO analysis indicated that K species enhanced the reducibility of NiO thin film over Ni as co-catalyst, and Li species lessened the reducibility of metallic Ni by chemical reaction with MgO. FTIR analysis of the poisoned catalyst did not exhibit the characteristic ${\vector}_1$$(D_{3h})$ peaks (1055 $cm^{-1},\;1085\;cm{-1})$ for pure crystalline carbonates, instead a new peak (1120 $cm^{-1})$ was observed proportionally with deformed alkali carbonates. From XRD analysis, the oxidation of metallic Ni into $Ni_xMg_{1-x}O$ was confirmed by the peak shift of MgO with shrinking of Ni particles. Conclusively, hot alkali species induced both chemical poisoning and physical deposition on Ni/MgO catalyst in DIR-MCFC at 650 ℃.

Keywords

References

  1. Fuel Cell Handbook Appleby, A. J.;Foulkes, F. R.
  2. Proceedings of the Third International Symposium on Carbonate Fuel Cell Technology Shores, D.; Maru, H.; Uchida, I.; Selman, J. R.
  3. Appl. Catalysis A: Gen v.143 Berger, R. J.;Doesburg, E. B. M.;van Ommen, J. G.;Ross, J. R. H.
  4. Energy v.11 Selman, R. J.
  5. Reprints of Fuel Cell Seminar Tarjanyi, M.;Paetch, L.;Bernard, R.;Ghezel-Ayagih, H.
  6. React. Kinet. Catal. Lett. v.34 Moral, P.;Praliaud, H.;Martin, G. A.
  7. J. Phys. Chem. v.94 Catlow, C. R. A.;Jackson, R. A.;Thomas, J. M.
  8. Trans. Faraday Soc. v.58 Bielanski, A.;Deren, J.;Haber, J.;Sloczynski, J.
  9. Aust. J. Chem. v.38 Cochran, S. J.;Larkins, F. P.
  10. Int. J. Hydrogen Energy v.17 no.3 Cavallaro, S.;Freni, S.;Cannistraci, R.;Aquino, M.;Giordano, N.
  11. App. Catalysis A v.126 Rostrup-Nielsen, R. J.;Christiansen, L. J.
  12. J. Korean Ind. Eng. Chem. Moon, H.-D.;Kim, J.-H.;Ha, H. Y.;Lim, T.-H.;Hong, S.-A.;Lee, H.-I.
  13. J. Catal. v.145 Demicheli, M. C.;Duprez, D.;Barbier, J.;Ferretti, O. A.;Ponzi, E. N.
  14. Catalysis, Science and Technology v.5 Catalytic Steam Reforming Rostrup-Nielson, R. J.;Anderson, J. R.(Ed.);Bourdart, M.(Ed.)
  15. Surf. Sci. v.306 Simon, D.;Bigot, E.
  16. Appl. Catal. v.137 Di Cosimo, J. I.;Diez, V. K.;Apesteguia, C. R.
  17. Appl. Catal. v.71 Norby, T.;Andersen, A. G.
  18. Catal. Today v.27 Lavalley, J. C.
  19. Mater. Chem. v.7 Busca, G.;Lorenzelli, V.
  20. J. Chem. Soc., Farad. Trans. 1 v.77 Guglielminotti, E.;Coluccia, S.;Garrone, E.;Cerruti, L.;Zecchina, A.
  21. J. Phys. Chem. v.23 Tsyganenko, A. A.;Lamotte, J.;Gallas, J. P.;Lavalley, J. C.
  22. J. Catal. v.148 Parra Soto, J. B.
  23. J. Catal. v.146 Lamber, R.;Ekloff, G. S.
  24. Appl. Catalysis A: Gen v.136 Yamazaki, O.;Tomishige, K.;Fujimoto, K.