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We show that Shaw’s optimized nonlocal model potential (OMP) in combination with the perturbative hyper- 
netted-chain equation for pair correlation functions can be successfully applied to predict pair structures of 
compressed and expanded liquid rubidium. For compressed rubidium, it is possible to apply the OMP to a state 
for which the model radius is even close to the Wigner-Seitz radius. In addition, our results are parallel to those 
from Chihara and Kahl’s quantal hypernetted-chain equation in that it supports the uniform compression model 
up to 6.1 GPa. Calculation also shows that the pair structure is relatively insensitive to the choice of the ex
change-correlation function for the electron liquid. Discussions are also given for compressed and expanded 
cesium.

Introduction

Recently, we have successfully applied Shaws optimized 
nonlocal model potential (OMP) to the calculation of ther
modynamics and pair structures of liquid alkali and alkaline- 
earth metals.1 To be more precise, the calculation was based 
on the combination of the OMP for calculating the electronic 
energy of a metal2-4 and the perturbative hypernetted-chain 
integral equation5,6 (PHNC) for calculating the pair struc
tures from a given pair potential. This success implies that 
the OMP, within the second-order perturbation treatment, 
can make a good account of the electron-ion interaction in s- 
p bonded metals. This is possible because the PHNC is suffi
ciently reliable to rule out any possibility that the major dis
crepancy from the experimental data is ascribable to the 
statistical mechanical part of the OMP+PHNC, i.e., the 
PHNC. For this, we note that the PHNC is almost equally 
reliable for model systems interacting with a pair potential of 
varying degree of softness from the unscreened Coulombic 
system to the Lennard-Jones system.

In view of the successive description of metallic properties 
at normal density, a natural question is if OMP+PHNC is 
still reliable for liquid metals at expanded and compressed 
states or not. For liquid rubidium, it is possible to answer this 
question at least partly, since experimental data of the struc
ture factor are available from the x-ray diffraction or the 
neutron scattering method. Theoretical works also suppli- 
ment the experimental observation. For compressed liquid 
rubidium, we mention two recent works. The first one is the 
first-principle molecular dynamics simulation due to Shi- 
mojo et al.,7,8 and the second one is due to Chihara and Kahl 
(CK) on the quantal hypernetted-chain equation in combina
tion with Rosenfeld's modified hypernetted-chain equation.9 
These works showed that the static structure factors or the 
radial distribution functions calculated from their methods 
are in good agreement with experimental data at states com
pressed along the melting line. In this respect, it will be 
interesting to answer the question to what extent the basic 

idea of the model potential itself is valid when the model 
radius is comparable to the Wigner-Seitz radius. For this we 
note that the physical idea underlying the OMP is that the 
bare interaction of a valence electron with an ionic core can 
be replaced by a model potential due to Heine and Abaren- 
kov, so that the potential yields the correct logarithmic deriv
ative of the true wavefunction at some model radius which is 
small compared to the Wigner-Seitz radius. Furthermore, we 
need an answer to the question if the second-order perturba
tion theory of electron-ion interaction for s-p bonded metals 
can properly describe the dependence of the screening and 
the exchange-correlation effect of conduction electrons upon 
the change of density. On the one hand, there are many theo
retical works on the pair structure of expanded liquid rubid- 
ium.7,10-14 These works showed that a universal behavior is 
observed as the alkali metals are expanded along the liquid
vapor coexistence curve, many of which are related to the 
gradual transition from the metal to a nonmetallic state. In 
this respect, it will be worthwhile to study how well the 
present method reproduces these features.

Our previous calculations were based on Ichmaru and 
Utsumi’s expression (IU) for the exchange-correlation func
tion G(k) of the electron liquid.15 However, the IU expres
sion does not give a correct asymptote at large k in that it 
saturates to a constant. Very recently, Moroni, Ceperley, and 
Senatore (MCS) presented an accurate fit to their diffusion 
Monte Carlo data16 based on the correct behavior at large k. 
In the limit, the function takes the form G(k) = C(k/ kp)2 + 
B, where B and C are density-dependent parameters. Although 
major difference in G(k) is observed at k> 2kpbetween the 
IU and the MCS, there is still a nonnegligible difference at 
k< 2kp especially at k~2kp. And that difference was man
ifested in the difference in V(r) calculated from Ashcroft's 
empty-core pseudopotential.17 A natural question which 
arises in relation to this observation is: (1) Is the difference 
in G(k) at k> 2 kp still not important for Shaw's OMP which 
is nonlocal? (2) Will anything different be observed upon the 
change of density due to the compression or expansion? (3) 
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What kind of change is brought about in the pair structure as 
a result of change in V(r)? These are additional problems 
which will be considered in our calculation.

Formulation

In this section, we give only a brief description of the 
OMP and the PHNC, since the details are given in Ref. 1. 
The OMP is based on the optimization of the Heine-Abaren- 
kov potential describing the bare interaction w0(r) of a 
valence electron with an ionic core:

Ze2 卫 r Ze2_lW0(r) = - 쯔 - £ ©[Ri(E) -r]\Al - 牛」Pt, (1)

Where lo is the highest angular momentum quantum number 
for the core electrons; Rl(E) and Al(E) are the radius and 
well-depth of the core which depend on the energy engen- 
value of the system; Pl is the projection operator which 
extracts out the l-th angular momentum component from the 
eigenfunction; 0(r) is the heavy side step function. Shaw 
showed that the optimization of the model wavefunction is 
achieved when the relation Al(E) = Ze2 / Rl(E) is satisfied. 
Parameters in the model potential are calculated from the 
extrapolation of those for ionic term energies. Specifically, 
core-shift of the electron energy due to the conduction elec
trons and all the ions other than that to which the electron 
belongs was calculated from the prescriptions given by Ani- 
malu and Heine (AH),18,19 Ballentine and Gupta (BG),19,20 
and another one based on the BG, which will be explained in 
the next section.

In the context of the second-order perturbation theory, the 
effective interaction V(r) between a pair of ions is the sum of 
direct and indirect contributions. Namely,

V(r) = 空 + ^\；dqq^F (q) 쁳羿 ⑵

Where Z* is the effective valence which takes into account 
the difference between the true wavefunction and the model 
pseudo wavefunction, and F(q) is the energy-wavenumber 
characteristic. To calculate F(q), we assume a uniform distri
bution of the depletion charge over an appropriate core vol
ume. As explained in the previous section, the exchange
correlation function G(k) comes into our calculation through 
two different expressions due to MCS and IU.

In the PHNC, the pair potential V(r) is divided into the 
reference potential V0(r) and the perturbation contribution 
V1(r) in a way that depends on the density. As in the previous 
work, the repulsive range 尢 in Vo(r) is assumed to follow the 
relation 尢 = min(afc r*), where 시伽 is the nearest neighbor 
distance in the face-centered-cubic lattice and r* is the 
interionic distance at which V(r) becomes the global mini
mum. Next, the bridge function B(r) of the metallic system 
is approximated by that, B0(r), for the reference system. In 
turn, B0(r) is calculated from the numerical solution of the 
Ornstein-Zernike relation using Ballone et als closure rela- 
tion.21

Results and Discussion

First, we describe our calculations for liquid rubidium 
compressed along the melting line. Five states considered in 
Table 1 correspond to those for which experimental data of 
pair structure are available.22 An important observation from 
the Table is that the relation R1 < 시猝 is not satisfied at (570 
K, 6.1 GPa) with neither the AH nor the BG set of the OMP 
parameters. This can be a serious drawback of the OMP, 
since the method is expected to work only if the potential 
due to an ionic core becomes Coulombic within the Wigner- 
Seitz radius. The condition can be expressed as Rc < Rl < 
시ws. (Rc is the core radius of Rb+ ion.) However, it is also 
possible that it merely reflects the fact that both of the AH 
and the BG fail to give reasonable estimation of the core
shift Aef for the metallic environment at high compression. 
Therefore, we propose a modified BG scheme (M-BG) in 
which 庇f for all values of l are calculated from the BG 
expression for l = 0. For this, we mention an important 
aspect of Shaw’s formalism: Values of Al from the AH or the 
BG are not used as they are, but are modified to take into 
account additional terms to the first order in the total model 
potential. [For more details, see Eqs. (5)-(10) in Ref. 3.] Not 
to say, the major reason for doing this is that we need more 
accurate estimation of the core-shift than simply taking the 
average of the potential for an electron in the Wigner-Seitz 
cell. Therefore, it remains a question if various arguments 
used to derive the BG expression for Aef are still valid in our 
calculation as they are. Furthermore, there are various 
approximations in the BG. For example, it does not take into 
account the inhomogeneity of the electron system originat
ing from the large electronic density inside an ionic core. In 
short, we believe that our modification to the BG does not 
introduce any serious problem in the calculation. In fact, dif
ference in R1 between the M-BG and the BG is less than two 
percent, which is much smaller than that between the AH 
and the BG. As shown in Table 1, at (570 K, 6.1 GPa), R1 

(Ef) calculated from this modified scheme satisfies the rela
tion Rc < R1 <시时23

For clarity, we have studied the dependence of V(r) and 
pair structures on different choice of G(k) as well as on dif-

Table 1. Model radii R(Ef) in the OMP at l = 0 and 1 for liquid 
rubidium compressed along the melting line. Three different sets of 
data corresponds to different methods for calculating the core-shift. 
BG, M-BG, and AH denote the methods due to Ballentine and 
Gupta, our modification of that due to BG, and Animalu and Heine. 
The Wigner-Seitz radius awS at each density is shown for 
comparison. Note that the optimization of the model wavefunction 
requires that Ai(Ef) - Ri(Ef) = Ze2, where Z is the valence charge.

T(°K) p (g/cc) P(GPa)
BG

R°(Ef)
M-BG

R1E)
AH BG

시、WS
MBG AH

350 1.459 0.0 4.141 4.141 4.372 4.297 4.263 4.391 5.391
370 1.562 0.2 4.144 4.144 4.396 4.302 4.265 4.4035.271
520 2.057 2.5 4.121 4.121 4.472 4.301 4.253 4.4394.810
540 2.276 3.9 4.171 4.171 4.605 4.337 4.281 4.4984.649
570 2.850 6.1 4.198 4.198 4.847 4.368 4.296 4.5884.313
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ferent choice of the parameters in the OMP. Different combi
nations will be denoted by (M-BG, MCS), (M-BG, IU), (BG, 
MCS), (BG, IU), (AH, MCS), and (AH, IU). As explained in 
the previous sections, M-BG, BG, and AH denote the differ
ent methods for extracting the core-shift, and MCS and IU 
represent the difference in the calculation of the exchange- 
correaltion function G(k). When we consider the effect of 
G(k) on V(r), we observe a behavior which is qualitatively 
very similar to that observed by Moroni et al. for liquid 
sodium calculated from the local pseudopotential.17 At (350 
K, 0 GPa), corresponding to the triple point, Figure 1 shows 
that the MCS V(r) is lower than the IU by almost a constant 
amount (〜0.18 kT) at r* < r < rs, where V(rs) corresponds to 
the shoulder in the potential. This difference (in units of kT) 
gets smaller as pressure increases. [See Figure 2 for V(r) at 
(540 K, 3.9 GPa).] From the two figures, we also observe 
that the difference in V(r) introduced by the modification of 
the BG to the M-BG is much smaller than that due to change 
of G(k) or due to the change of the OMP parameters from 
the AH to the BG, being noticeable only at r~r*. Fortu
nately, this implies that possible error in V(r) introduced by a 
few percent of inaccuracy in the OMP parameters is not sig
nificant. Rather, much larger uncertainty can be introduced

5
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Figure 1. Pair potential V(r) for liquid rubidium at (350 K, 1.459 
g/cc, 0 GPa) calculated from the OMP: (a) Solid, dotted, dashed, 
and dash-dot-dashed lines correspond to (M-BG, MCS), (M-BG, 
IU), (BG, MCS), and (BG, IU), respectively. (b) Solid, dotted, 
dashed, and dash-dot-dashed lines correspond to (M-BG, MCS), 
(M-BG, IU), (AH, MCS), and (AH, IU), respectively. See the text 
for definitions of these terms. 

through the small uncertainty in our knowledge of G(k). For 
k < 2 kF, we note that the only appreciable difference in G(k) 
is observed at k~2 kF among various expressions for it 
available up to now. [See Figure 4 of Ref. 17.] As in the case 
of the local pseudopotential, the uncertainty at larger k is not 
important. This is supported by our calculation which shows 
that the curves of V(r) from the MCS and the local density 
approximation (LDA) are nearly indistinguishable from 
each other on the scale shown in Figure 1.

Figure 3 shows the structure factor calculated from the 
present method in comparision with Tsuji et al’s experimen
tal data22 at four compressed states considered in Table 1 . 
For simplicity, our results are shown for (M-BG, MCS) and 
(AH, MCS) only. It is practically impossible to distinguish 
(M-BG, IU), (BG, MCS), (BG, IU) from the (M-BG, MCS) 
on the scale shown in the figure. Presumably, this result 
reflects the well-known fact that the structure of liquid is 
mainly determined by its repulsive interaction, noting that 
the major difference in V(r) between these four combina
tions occurs only in the attractive range. On the other hand, 
difference in V(r) between the AH and the BG extends to the 
repulsive range, causing much larger difference in the pair 
structure. In the figure solid lines correspond to the M-BG, 
and the dotted lines, to the AH. In accordance with our pre
vious work on the liquid alkali metals at normal pressure, the 
AH exhibits larger oscillation in the first few extrema. We

Figure 2. Pair potential V(r) for liquid rubidium at (540 K, 2.276 
g/cc, 3.9 GPa) calculated from the OMP. See the caption in Figure 
1 for the notation.
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Figure 3. S(k) for the liquid rubidium at four states (0.2, 2.5, 3.9, 
and 6.1 GPa) compressed along the melting line calculated from 
the present method in comparison with Tsuji et al’s experimental 
data22 (open circles). Solid and dotted lines correspond to the M- 
BG and the AH sets of the OMP parameters. At 6.1 GPa the AH 
data are not shown, since R1 > aWS. See the text.

have not shown the AH result at 6.1 GPa, since R1 becomes 
larger than qws as described above.

More importantly, our results are qualitatively very similar 
to those of Chihara and Kahl (CK) calculated from the quan- 
tal hypernetted-chain equation in conjuction with the MHNC 
for calculating the pair structure.9 Keeping in mind that the 
low k behabior of the experimental data are rather uncer- 
tain,9 we find a good agreement with experimental data at 
0.2 and 6.1 GPa. However, theoretical peak positions are 
shifted toward smaller k at 2.5 and 3.9 GPa. CK also observed 
a similar behavior, and they attributed it to the possible inac
curacy of the estimated density of liquid rubidium at high 
pressure. In fact, the peak position calculated from the M- 
BG or the BG agrees with experimental data much better if 
the density is slightly increased. Figure 4 shows this at 3.9 
GPa. Theoretical data in the figure were calculated at p = 
2.560 g/cc corresponding to the decrease in aWS by approxi
mately 4%. We still note that there remains a noticeable dif
ference in the height of the first two maxima. According to 
Tsuji, there is some ambiguity in the experimental values of 
the peak height, while the peak position is accurate and reli- 
able.9 Figure 5 shows g(r) calculated from the present method 
in comparison with that from the Fourier trasnsform of Tsuji 
et al’s experimental S(k) at 0, 2.5, and 6.1 GPa. In Refs. 7

Figure 4. S(k) for the liquid rubidium at 3.9 GPa calculated from 
the present method in comparison with Tsuji et al’s experimental 
data22 (open circles). Solid line represents our data from the M-BG 
at 2.560 g/cc.

Figure 5. g(r) for the liquid rubidium at 0, 2.5, and 6.1 GPa 
calculated from the present method in comparison with Tsuji et al’s 
experimental data22 (open circles). Solid and dotted lines represent 
our data from the M-BG and the AH sets of the OMP parameters.

and 8, similar comparison was given for Shimojo et al’s 
result obtained from the first-principle simulation. It should 
be mentioned again that g(r) derived from the experimental 
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S(k) is subject to some uncertainty. Keeping this in mind, we 
conclude that our data agree with experimental data in a rea
sonable way and exhibit a behavior again very similar to 
Shimojo et al’s results. Unfortunately, the uncertainty of the 
experimental data makes it difficult to evaluate the reliability 
of the AH relative to the BG or the M-BG. At present, any of 
them seems to be about equally reliable as long as the den
sity does not exceed 1.5 times of that at the triple point.

It is also worth mentioning that the OMP still gives reli
able results at high pressure, even in case when the model 
radius is very close to the Wigner-Seitz radius. For example, 
at 3.9 GPa, Table 1 shows that both of Ro (Ef) and R1 (Ef) 
already exceed 90% of the Wigner-Seitz radius in all three 
methods of choosing the OMP parameters. Second, the 
present calculation was performed without modeling or 
pseudizing the d-component of the valence wavefunction. 
According to Shimojo etal’s calculation, the electronic s -d 
transition takes place gradually as the pressure increases. As 
a result, the electronic density of state near the Fermi level 
consists mainly of s component at 0 GPa, and d component 
at 6.1 GPa. At present, the uncertainty of the experimental 
data does not allow us to figure out what is lost by not mod
elling the d-component of the wavefunction. It’s possible 
that the lowest d-orbital is already smooth enough not to 
need modellization .

CK pointed out that there is a strong scaling property in 
the structure of compressed liquid alkali metals in that S(k) 
of two different states practically coincides when the dis
tance is scaled in units of aWS. Figure 6 shows that our calcu-

Figure 6. Peak position, k1, of S(k) at states compressed along the 
melting line. Filled circles are Tsuji et al’s experimental data at 0, 
0.2, 2.5, 3.9, and 6.1 GPa. Filled squares are also from Tsuji et al’s 
experiments. These data are digitized from Figure 11 of Ref 9. 
Dotted line represents Chihara and Kahl’s empirical rule k1aWS = 
4.30 deduced from their QHNC calculation.9 Open squares connected 
by a solid line correspond to the present calculation based on the 
M-BG set of the OMP parameters. Open triangles connected by a 
dashed line are for the AH. Theoretical datum is not shown for the 
AH at 6.1 GPa, since R1 > a^s.

lation also supports this observation. As noted by them, the 
first peak of S(k) is located almost at the same scaled posi
tion (k1aWS = 4.30) at all the states considered. Specifically, 
we see no sign of deviation from the uniform compression 
model at 6.1 GPa. This is in contrast to Shimojo et al’s con
clusion that the liquid rubidium deviates from the uniform 
compression model at 6.1 GPa, which was ascribed to the 
electronic s -d transition described above. Although not 
shown here, the uniform compression model is further sup
ported by our finding that the peak position in g(r) is 
inversely proportional to p1/3. More detailed investigation 
shows that this scaling property is not attributable to the 
scaling property of the pair potential: We are able to confirm 
that plots of V(r)/kT versus r/aWS at various pressures do not 
coincide with each other. Rather, Figure 7 supports CK’s 
observation that V(r) is almost state-independent, although 
ours are slightly more sensitive to the change of density. 
[See Figure 8 of Ref. 9 for comparison.]

Now, we briefly consider liquid rubidium expanded along 
the liquid-vapor coexistence curve up to (1900 K, 0.64 g/cc). 
As an example, Figure 8 shows V(r) for (M-BG, MCS), (M- 
BG, IU), (AH, MCS), and (AH, IU) at (1400 K, 0.97 g/cc). 
Curves for the BG are not shown, since they are nearly indis
tinguishable from those for the M-BG. Although less pro- 
nouncd, the variation of V(r) with variations of G(k) and the 
OMP parameters is qualitatively similar to that at 350 K 
shown in Figure 1. Figures 9 and 10 show S(k) and g(r) cal
culated from the present method in comparison with Franz et 
al’s experimental data24 at 1400 K. We first note that four 
theoretical curves of S(k) are in reasonable agreement with 
experimental data, differing from each other only at k 〜0. 
Similar degree of reliability is also manifested in the theoret
ical g(r). Interestingly, all the curves exhibit a behavior qual
itatively very similar to Shimojo et al’s result from the first-

Figure 7. Pair potential V(r) for liquid rubidium at 0 (solid line), 
2.5 (dashed line), and 6.1 GPa (dotted line) calculated from the 
OMP based on the (M-BG, MCS).
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Figure 8. Pair potential V(r) for liquid rubidium at (1400 K, 0.97 
g/cc) calculated from the OMP. See the caption in Figure 1(b) for 
the notation.

Figure 10. g(r) for rubidium at (1400 K, 0.97 g/cc). Notations are 
the same as in Figure 1(b).

Figure 9. S(k) for liquid rubidium at (1400 K, 0.97 g/cc) calculated 
from the OMP. See the caption in Figure 1(b) for the notation.

principle simulation shown in Figure 1 of Ref. 14. We list 
two more results consistent with experimental results which 
are universal to all the alkali metals. First, the peak position, 
k1, in S(k) is almost invariant under change in density. Simi
larly, the peak position, r1, in g(r), decreases only slightly 
with decrease in density. Second, the first coordination num
ber N1 decreases linearly with decrease in density, as shown 
in Figure 11. [Here, N\ is defined by 2 pj；1 dr4 nrr2g(r). ] In 
short, all the six combinations of various expressions for 
G(k) and the OMP parameters can be considered to give pair 
structures almost equally reliable for the expanded rubidium, 
taking the large uncertainty in the experimental data of S(k) 
into account.

Figure 11. The first coordination number N1 of the liquid rubidium 
expanded along the liquid-vapor coexistence curve. Open circles, 
filled circles, open triangles, and filled triangles denote results from 
the present calculation based on the (M-BG, MCS), (AH, MCS), 
(M-BG, IU), and (AH, IU), respectively. Solid and dotted lines 
show the best fits to the (aH, MCS) and (M-BG, IU).

It is also possible to apply the present method to other liq
uid metals. For this, we note that Tsuji et al. performed X- 
ray diffraction study of the dependence of the structure fac
tor of liquid cesium on the pressure.25 They argued that there 
is a structural change at about 2 GPa, and another one 
between 3 and 4 GPa. The latter change was related to the 
decrease in the peak height of the structure factor at 4.3 GPa 
compared to that at the lower pressure. The change at 2 GPa 
was ascribed to a transition from bcc-like structure to fcc- 
like one. Related to this problem, we have made preliminaty 
calculations at four compressed states considered in the 
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experiment. For this, we first made an estimation of the den
sity of these states using Harrison’s local pseudopotential, in 
combination with the Gibbs-Bogoliubov inequality based on 
the soft-sphere reference system.26 Reliability of the method 
was partly confirmed by its good ability to reproduce the 
experimental PVT relation up to 1.8661 GPa within 1% of 
Marenkov et al's data.27 However, it should be also men
tioned that there exists a large uncertainty in the value of 
experimental volume at high pressure. In fact, the volume 
estimated by Kuchhal et al. is different from that due to 
Marenkov et al. by about 15% at (473.15 K, 1.8661 GPa), 
which corresponds to the state of the highest pressure con
sidered in Table 3 of Ref. 27. In short, our calculations for 
the OMP+PHNC were carried out at (373.15 K, 2.022 g/cc, 
0.2 GPa), (484.15 K, 2.856 g/cc, 1.6 GPa), (483.15 K, 3.357 
g/ccc, 2.9 GPa), and (485.15 K, 3.784g/cc, 4.3 GPa). For 
three states up to 2.9 GPa, our calculation supports the fol
lowing experimental observations: (1) The height of the first 
peak in S(k) increases with pressure. (2) The peak position of 
S(k) increases with pressure, while the peak position, r1, of 
g(r) decreases. Furthermore, our values of r1 (= 5.007, 4.468, 
and 4.328 at these states) agree with experimental data 
shown in Figure 4 of Ref. 25. (3) Values of the first coordi
nation number (= 6.59, 7.65 and 7.36) exhibit a maximum at 
1.6 GPa. Unfortunately, the M-BG model radius, R0(EF) and 
R1(EF), becomes greater than the Wigner-Seitz radius at 4.3 
GPa. At present, it is not clear if this is due to the error in the 
estimated density or due to the limitation of the OMP itself. 
In short, pair structures calculated from the present method 
are also in reasonable agreement with experimental data for 
compressed liquid cesium. Similarly to the case of expanded 
rubidium, calculation on the expanded cesium also shows 
universal features of the alkali metals related to the metal- 
nonmetal transition, which we do not show here explicitly.

Conclusion

We have shown that an ab initio method based on the 
combination of the OMP and the PHNC can successfully 
describe pair structures of liquid rubidium compressed along 
the melting line. These are even the cases at 3.9 and 6.1 Gpa, 
where the model radii in the OMP exceed 90% of the 
Wigner-Seitz radius. In these states, our calculations are 
made possible through the modification of the method for 
calculating the OMP parameters due to Ballentine and 
Gupta. An important observation is that our calculation sup
ports Chihara and Kahls finding that the liquid rubidium is 
compressed uniformly as it is compressed along the melting 
line. Preliminary calculation also shows that the present 
method can be used for the study of liquid cesium under 
compression.

When applied to the systems of liquid rubidium and 
cesium expanded along the liquid-vapor coexistence curve, 
our calculation reproduces universal features common to all 
alkali metals which are observed as the metal-nonmetal tran

sition is gradually approached. We have also observed that 
the pair potentials and the pair structures are slightly depen
dent on the different choice of the exchange-correlation 
function, as well as on different choice of the core-shift used 
to evaluate the OMP parameters.
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