난포세포가 생쥐 난자의 Chymotrypsin에 대한 내성에 미치는 영향

Effects of Follicle Cells on the Chymotrypsin Resistance of Mouse Oocytes

  • 김성임 (이화여자대학교 의과대학 의학과 및 의과학연구소 분자생물학부) ;
  • 배인하 (성신여자대학교 생물학과) ;
  • 김해권 (서울여자대학교 생물학과) ;
  • 김성례 (이화여자대학교 의과대학 의학과 및 의과학연구소 분자생물학부)
  • Kim, Seong-Im (Department of Biology, Division of Molecular Biology, Ewha Medical Research Center, College of Medicine, Ewha Womans University) ;
  • Bae, In-Ha (Department of Biology, Sungshin Women's University) ;
  • Kim, Hae-Kwon (Department of Biology, Seoul Women's University) ;
  • Kim, Sung-Rye (Department of Biology, Division of Molecular Biology, Ewha Medical Research Center, College of Medicine, Ewha Womans University)
  • 발행 : 1999.09.30

초록

Objective: Mammalian follicle cells are the most important somatic cells which help oocytes grow, mature and ovulate and thus are believed to provide oocytes with various functional and structural components. In the present study we have examined whether cumulus or granulosa cells might playa role in establishing the plasma membrane structure of mouse oocytes during meiotic maturation. Design: In particular the differential resistances of mouse oocytes against chymotrypsin treatment were examined following culture with or without cumulus or granulosa cells, or in these cell-conditioned media. Results: When mouse denuded oocytes, freed from their surrounding cumulus cells, were cultured in vitro for $17{\sim}18hr$ and then treated with 1% chymotrypsin, half of the oocytes underwent degeneration within 37.5 min ($t_{50}=37.5{\pm}7.5min$) after the treatment. In contrast cumulus-enclosed oocytes showed $t_{50}=207.0$. Similarly, when oocytes were co-cultured with cumulus cells which were not associated with the oocytes but present in the same medium, the $t_{50}$ of co-cultured oocytes was $177.5{\pm}13.1min$. Furthermore, when oocytes were cultured in the cumulus cell-conditioned medium, $t_{50}$ of these oocytes was $190.0{\pm}10.8min$ whereas $t_{50}$ of the oocytes cultured in M16 alone was $25.5{\pm}2.9min$. Granulosa cell-conditioned medium also increased the resistance of oocytes against chymotrypsin treatment such that $t_{50}$ of oocytes cultured in granulosa cell-conditioned medium was $152.5{\pm}19.0min$ while that of oocytes cultured in M16 alone was $70.0{\pm}8.2min$. To see what molecular components of follicle cell-conditioned medium are involved in the above effects, the granulosa cell-conditioned medium was separated into two fractions by using Microcon-10 membrane filter having a 10 kDa cut-off range. When denuded oocytes were cultured in medium containing the retentate, $t_{50}$ of the oocytes was $70.0{\pm}10.5min$. In contrast, $t_{50}$ of the denuded oocytes cultured in medium containing the filtrate was $142.0{\pm}26.5min$. $T_{50}$ of denuded oocytes cultured in medium containing both retentate and filtrate was $188.0{\pm}13.6min$. However, $t_{50}$ of denuded oocytes cultured in M16 alone was $70.0{\pm}11.0min$ and that of oocytes cultured in whole granulosa cell-conditioned medium was $156.0{\pm}27.9min$. When surface membrane proteins of oocytes were electrophoretically analyzed, no difference was found between the protein profiles of oocytes cultured in M16 alone and of those cultured in the filtrate. Conclusions: Based upon these results, it is concluded that mouse follicle cells secrete a factor(s) which enhance the resistance of mouse oocytes against a proteolytic enzyme treatment. The factor appears to be a small molecules having a molecular weight less than 10 kDa.

키워드