Journal of Korea Multimedia Society (한국멀티미디어학회논문지)
- Volume 2 Issue 4
- /
- Pages.490-495
- /
- 1999
- /
- 1229-7771(pISSN)
- /
- 2384-0102(eISSN)
An Enhanced Fuzzy Single Layer Perceptron for Image Recognition
이미지 인식을 위한 개선된 퍼지 단층 퍼셉트론
- Lee, Jong-Hee (Detp.of Computer Information Engineering, Silla University)
- Published : 1999.12.01
Abstract
In this paper, a method of improving the learning time and convergence rate is proposed to exploit the advantages of artificial neural networks and fuzzy theory to neuron structure. This method is applied to the XOR Problem, n bit parity problem which is used as the benchmark in neural network structure, and recognition of digit image in the vehicle plate image for practical image application. As a result of the experiments, it does not always guarantee the convergence. However, the network showed improved the teaming time and has the high convergence rate. The proposed network can be extended to an arbitrary layer Though a single layer structure Is considered, the proposed method has a capability of high speed 3earning even on large images.
본 논문에서는 인공 신경망과 퍼지 논리의 장점을 뉴런 구조에 적용하여 학습 속도가 마르며 수렴률을 향상시키는 방법을 제안한다. 인공신경망의 벤치 마크로 사용되는 XOR문제 n 비트 parity문제와 현실적인 이미지 응용을 위해 자동차 번호 판에서 숫자 이미지에 적용시켜 보았다. 실험결과, 모든 자료 값과 목표 값에 대해서 항상 수렴을 보장하는 것은 아니다. 그렇지만, 학습 속도가 빠르며 수렴률의 향상을 보였다. 제안된 방법은 임의의 충으로 확장이 가능하다. 여기서는 단층의 경우만을 고려하여 빠른 속도와 방대한 이미지에 대해서 빠른 처리를 가능하게 한다.
Keywords