J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 6(1999), no. 1, 9-12

SOME PROPERTIES OF A DIRECT INJECTIVE MODULE

CHANG WOO HAN AND SU JEONG CHOI

ABSTRACT. The purpose of this paper is to show that by the divisibility of a direct injective module, we obtain some results with respect to a direct injective module.

1. Introduction

Throughout this paper, let R be a ring. All modules are unitary left R-modules and all maps are R-homomorphisms. A module M is said to be direct injective if, given any direct summand N of M with an inclusion $i:N\to M$, for each monomorphism $f:N\to M$, there exists an endomorphism g of M such that the following diagram

$$\begin{matrix} M \\ i & \nwarrow^g \\ O & \longrightarrow N & \xrightarrow{f} & M \end{matrix}$$

commutes, i.e., $g \circ f = i$. The concept of a direct injective module as the generalization of a quasi-injective module was introduced by Nicholson [3] in 1976.

Xue [5] showed the characterizations of hereditary ring and semisimple ring by using direct projective modules and direct injective modules. A module M is said to have the *summand sum property* if the sum of any two direct summands of M is again a direct summand of M. Similarly, a module M is said to have the *summand*

Received by the editors December 2, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 16D50.

Key words and phrases. direct injective module, summand intersection property, summand sum property.

This paper was supported by the research fund of Dong-A University, 1998.

intersection property if the intersection of any two direct summands of M is a direct summand of M.

In this paper, we show that every direct summand of a direct injective module is direct injective. Through the divisibility of a direct injective module, we have some properties of a direct injective module. In addition, we prove that every module which has the summand intersection property has the summand sum property.

2. Results

Theorem 2.1. Every direct summand of a direct injective module is direct injective.

Proof. Assume that M is a direct injective module. Let N be a direct summand of M. Given any direct summand A of N, monomorphisms $f:A\to N$ and $g:N\to M$, and the inclusion maps $i_A:A\to N$ and $i_N:N\to M$,

$$M$$

$$i_{N} \uparrow$$

$$N$$

$$i_{A} \uparrow$$

$$O \longrightarrow A \xrightarrow{f} N \xrightarrow{g} M$$

since M is a direct injective module, there exists an endomorphism k of M such that $k \circ g \circ f = i_N \circ i_A$. We define an endomorphism h of N by $h = p_N \circ k \circ g$ and so we obtain the following diagram

$$\begin{array}{c}
N \\
i_A \uparrow \\
O \longrightarrow A \stackrel{f}{\longrightarrow} N
\end{array}$$

commutes, i.e.,

$$h \circ f = (p_N \circ k \circ g) \circ f = p_N \circ (k \circ g \circ f) = (p_N \circ i_N) \circ i_A = I_N \circ i_A = i_A.$$

Therefore, the direct summand N is a direct injective module. \square

Theorem 2.2 [2]. Every dierct injective module M is divisible.

Corollary 2.3. If M is a direct injective module, then $\operatorname{Hom}_Z(R,M)$ is an injective R-module.

Proof. Let M be a direct injective module. Then by theorem 2.2, M is a divisible module. If we regard M as an divisible abelian group, then $\text{Hom}_Z(R,M)$ is an injective R-module. \square

Corollary 2.4. Let R be a principal ideal domain. Then M is a direct injective module if and only if M is a divisible module.

Proof. Assume that M is a direct injective module, then by Theorem 2.2, M is a divisible module.

Conversely, let M be a divisible module. Since R is a principal ideal domain, M is an injective module. This implies that M is a direct injective module. \square

Corollary 2.5. Let R be a principal ideal domain. Then M is an injective module if and only if M is a direct injective module.

Proof. suppose that M is an injective module. Then clearly M is a direct injective module.

Conversely, let M be a direct injective module. By Theorem 2.2, M is a divisible module. Since R is a principal ideal domain, by Corollary 2.4, M is an injective module. \square

The following is related to arbitrary modules.

Theorem 2.6. For a module M, if M has the summand intersection property, then M has the summand sum property.

Proof. Assume that a module M has the summand intersection property. It is sufficient to show that for every pair A, B of direct summands of M and the canonical projection $p: M \to B$, Im $p|_A$ is a direct summand of B. Then Ker $p|_A = \text{Ker } p \cap A$ is a direct summand of M and by [4, p. 33], Ker $p|_A$ is a direct summand of A. Hence an exact sequence

$$0 \longrightarrow \operatorname{Ker} p|_{A} \longrightarrow A \longrightarrow \operatorname{Im} p|_{A} \longrightarrow 0$$

splits. Im $p|_A$ is a summand of A and a direct summand of M. Im $p|_A \subset B \subset M$ implies that Im $p|_A$ is a direct summand of B. Therefore, M has the summand sum property. \square

REFERENCES

- 1. J. L. Garcia, Properties of direct summands of modules, Comm. Algebra 17 (1989), 73-92.
- 2. C. W. Han and S. J. Choi, Generalizations of the quasi-injective module, Comm. Korean Math. Soc. 10 (1995), 811-813.
- 3. W. K. Nicholson, Semiregular modules and rings, Can. J. Math. 28 (1976), 1105-1120.
- 4. J. J. Rotman, An Introduction to Homological Algebra, Academic Press Inc., New York, 1979.
- 5. W. Xue, Characterization of rings using direct projective modules and direct injective modules, J. Pure Appl. Algebra 87 (1993), 99-104.

DEPARTMENT OF MATHEMATICS, DONG-A UNIVERSITY, HADAN-2-DONG, SAHA-GU, PUSAN 604-714, KOREA.