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SOME PROPERTIES OF A DIRECT INJECTIVE MODULE

CHANG W00 HAN AND Su JEONG CHOI

ABSTRACT. The purpose of this paper is to show that by the divisibility of a direct
injective module, we obtain some results with respect to a direct injective module.

1. Introduction

Throughout this paper, let R be a ring. All modules are unitary left R-modules
and all maps are R-homomorphisms. A module M is said to be direct injective
if, given any direct summand N of M with an inclusion ¢ : N — M, for each
monomorphism f : N — M, there exists an endomorphism g of M such that the
following diagram

M
zI NY
0 s N L M

commutes, i.e., g o f = i. The concept of a direct injective module as the general-
ization of a quasi-injective module was introduced by Nicholson [3] in 1976.

Xue [5] showed the characterizations of hereditary ring and semisimple ring by
using direct projective modules and direct injective modules. A module M is said
to have the summand sum property if the sum of any two direct summands of M is
again a direct summand of M. Similarly, a module M is said to have the summand
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intersection property if the intersection of any two direct summands of M is a direct
summand of M.

In this paper, we show that every direct summand of a direct injective module is
direct injective. Through the divisibility of a direct injective module, we have some
properties of a direct injective module. In addition, we prove that every module
which has the summand intersection property has the summand sum property.

2. Results

Theorem 2.1. Every direct summand of a direct injective module is direct injective.

Proof. Assume that M is a direct injective module. Let N be a direct summand
of M. Given any direct summand A of N, monomorphisms f : A — N and
g: N — M, and the inclusion maps iy : A — N and iy : N = M,

M

.
N

i,,T
A

0 5 N ‘2 Mm

since M is a direct injective module, there exists an endomorphism k& of M such
that kogo f =iy 0is. We define an endomorphism h of N by h = py ok o g and

so we obtain the following diagram

§<
a— =2

commutes, i.e.,
hofz(pNokog)ofszo(kogof)z(pNoiN)o'iA=INoiA=iA.

Therefore, the direct summand N is a direct injective module. U
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Theorem 2.2 [2]. Every dierct injective module M is divisible.

Corollary 2.3. If M is a direct injective module, then Homz (R, M) is an injective
R-module.

Proof. Let M be a direct injective module. Then by theorem 2.2, M is a divisible
module. If we regard M as an divisible abelian group, then Homz(R, M) is an
injective R-module. [

Corollary 2.4. Let R be a principal ideal domain. Then M is a direct injective

module if and only if M is a divisible module.

Proof. Assume that M is a direct injective module, then by Theorem 2.2, M is a
divisible module.

Conversely, let M be a divisible module. Since R is a principal ideal domain, M
is an injective module. This implies that M is a direct injective module. O

Corollary 2.5. Let R be a principal ideal domain. Then M is an injective module
if and only if M is a direct injective module.

Proof. suppose that M is an injective module. Then clearly M is a direct injective
module.

Conversely, let M be a direct injective module. By Theorem 2.2, M is a divisible
module. Since R is a principal ideal domain, by Corollary 2.4, M is an injective

module. O
The following is related to arbitrary modules.

Theorem 2.6. For a module M, if M has the summand intersection property, then

M has the summand sum property.

Proof. Assume that a module M has the summand intersection property. It is
sufficient to show that for every pair A, B of direct summands of M and the
canonical projection p : M — B, Im p| 4 is a direct summand of B. Then Ker pl4 =
Ker p N A is a direct summand of M and by {4, p. 33], Ker p|4 is a direct summand

of A. Hence an exact sequence

0 —— Kerp|a y A—— Imp|y —— 0




12 CHANG WOO HAN AND SU JEONG CHOI

splits. Im p|4 is a summand of A and a direct summand of M. Im p|4 C BC M
implies that Im p| 4 is a direct summand of B. Therefore, M has the summand sum

property. [
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