Contribution of Second Metal Binding Site for Metal Specificity of D-Xylose Isomerase

  • Cha, Jae-Ho (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
  • Published : 1999.12.01

Abstract

The metal specificity of D-xylose isomerase from Streptomyces rubiginosus was examined by site-directed mutagenesis. The activation constants for metal ion ($Mg^{2+},{\;}Mn^{2+},{\;}or{\;}Co^{2+}$) of wild-type and mutant enzymes were determined by titrating the metal ion-free enzyme with $Mg^{2+},{\;}Mn^{2+},{\;}and{\;}Co^{2+}$, respectively. Substitutions of amino acids either on coordinated or around the M2 site (His-22O, Asn-185, Glu-186, and Glu-221) dramatically affected the activation constants as well as activity. A decrease of metal binding affinity was most significant in the presence of $Mg^{2+}$. When compared with the wild-type enzymes, the binding affinity of H220S and Nl85K for Mg^{2+} was decreased by 10-15-fold, while the affinity for $Mn^{2+}{\;}or{\;}Co^{2+}$ only decreased by 3-5-fold. All the mutations close to the M2 site changed their metal preference from $Mg^{2+}{\;}to{\;}Mn^{2+}{\;}or{\;}Co^{2+}$. These altered metal preferences may be caused by a relatively weak binding affinity of $Mg^{2+}$ to the enzyme. Thermal inactivation studies of mutants at the M2 site also support the importance of the M2 site geometry for metal specificity as well as the thermostability of the enzyme. Mutations of other important groups hardly affected the metal preference, although pronounced effects on the kinetic parameters were sometimes observed. This study proposes that the metal specificity of D-xylose isomerase can be altered by the perturbation of the M2 site geometry, and that the different metal preference of Group I and GroupII D-xylose isomerases may be caused by nonconserved amino acid residues around the M2 site.

Keywords

References

  1. Eur. J. Biochem. v.213 X-and Q-band EPR studies on the two $Mn^{2+}$ substituted metal-binding sites of D-xylose isomerase Bogumil, R.;R. Kappl;J. Huttermann;C. Sudfeldt;H. Witzel
  2. Enzyme Microb. Technol. v.8 Catalytic properties of D-xylose isomerase from Streptomyces violaceoruber Callens, M.;H. Kersters-Hilderson;O. van Opstal;C. K. De Bruyne
  3. Biochem. J. v.250 Metal ion binding to D-xylose isomerase from Streptomyces violaceoruber Callens, M.;P. Tomme;H. Kersters-Hilderson;R. Cornelis;W. Vangrysperre;C. K. De Bruyne
  4. Enzyme Microb. Tech. v.10 D-xylose isomerase from Streptomyces violaceoruber. Structural and catalytic roles of bivalent metal ions Callens, M.;H. Kersters-Hilderson;W. Vangrysperre;C. K. De Bruyne
  5. Proc. Natl. Acad. Sci. USA v.86 X-ray analysis of D-xylose isomerase at 1.9 Å: Native enzyme in complex with substrate and with a mechanism-designed inactivator Carrell, H. L.;J. P. Glusker;V. Burger;F. Manfre;D. Tritsch;J.-F. Bielmann
  6. Mol. Cells v.8 Lowering the pH optimum of D-xylose isomerase: Effect of mutations of the negatively charged residues Cha, J.;C. A. Batt
  7. J. Biol. Chem. v.269 Perturbing the metal site in D-xylose isomerase: Effect of mutations of His-220 on enzyme stability Cha, J.;Y. Cho;R. D. Whitaker;H. L. Carrell;J. P. Glusker;P. A. Karplus;C. A. Batt
  8. J. Mol. Biol. v.288 Crystal structures of thermostable xylose isomerases from Thermus caldophilus and Thermus thermophilus: Possible structural determinants of thermostability Chang, C.;B. C. Park;D. S. Lee;S. W. Suh
  9. Process Biochem. v.15 Glucose isomerase (a review) Chen, W.-P.
  10. J. Mol. Biol. v.212 Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift Collyer, C. A.;K. Henrick;D. M. Blow
  11. Agric. Biol. Chem. v.35 Studies on D-glucose-isomerizing enzyme from Bacillus coagulans strain HN-68 Danno, G.
  12. J. Biol. Chem. v.192 A new spectrophotometric method for the detection and determination of ketosugars and trioses Dische, Z.;E. Borenfreund
  13. Biochemistry v.28 Crystallographic studies of the mechanism of xylose isomerase Farber, G. K.;A. Glasfield;G. Tiraby;D. Ringe;G. A. Petsko
  14. Enzyme Microb. Tech. v.14 D-glucose/xylose isomerase from Streptomyces: Differential roles of magnesium and cobalt ions Gaikwad, S. M.;M. B. Rao;V. V. Deshpande
  15. J. Mol. Biol. v.208 Structure of D-xylose isomerase from Arthrobacter strain B3728 containing the inhibitors xylitol and D-sorbitol at 2.5 Å and 2.3 Å resolution, respectively Henrick, K.;C. A. Collyer;D. M. Blow
  16. Biochemistry v.31 Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding site Jenkins, J.;J. Janin;F. Rey;M. Chiadmi;H. van Tilbeurgh;H. Lasters;M. de Maeyer;D. Van Belle;S. Wodak;M. Lauwereys;P. Stanssens;N. T. Mrabet;J. Snauwaert;G. Matthyssens;A.-M. Lambeir
  17. Agric. Biol. Chem. v.46 Role of cobalt in stabilizing the molecular structure of glucose isomerase from Streptomyces griseofuscus S-41 Kasumi, T.;K. Hayashi;N. Tsumura
  18. Biochem. J. v.273 Purification and characterization of thermostable glucose isomerase from Clostridium thermosulfurogenes and Thermoanaerobacter strain B6A Lee, C.;J. G. Zeikus
  19. Biochem. J. v.285 Stability of Arthrobacter D-xylose isomerase to denaturants and heat Rangarajan, M.;B. Asboth;B. S. Hartley
  20. Proteins v.4 Structural analysis of the 2.8 Å model of xylose isomerase from Actinoplanes missouriensis Rey, F.;J. Jenkins;J. Janin;I. Lasters;P. Alard;M. Classsens;G. Matthyssens;S. Wodak
  21. Biochem. J. v.286 Binding characteristics of $Mn^{2+}$, $Co^{2+}$, and $Mg^{2+}$ ions with several D-xylose isomerases Van Bastelaere P. B. M.;M. Callens;W. A. E. Vangrysperre;H. L. M. Kersters-Hilderson
  22. Biochem. J. v.307 Wild-type and mutant D-xylose isomerase from Actinoplanes missouriensis: Metal ion dissociation contants, kinetic parameters of deuterated and non-deuterated substrates and solvent-isotope effects Van Bastelaere, P. B. M.;H. L. M. Kersters-Hilderson;A.-M. Lambeir
  23. Biochemistry v.31 Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 3. Changing metal specificity and the pH profile by site-directed mutagenesis Van Tilbeurgh, H.;J. Jenkins;M. Chiadmi;J. Janin;S. J. Wodak;N. T. Mrabet;A.-M. Lambeir
  24. Gene v.65 A simple and rapid method for the selection of oligodeoxynucleotide-directed mutants Vandeyar, M. A.;M. P. Weiner;C. J. Hutton;C. A. Batt
  25. J. Biol. Chem. v.270 Probing the roles of active site residues in D-xylose isomerase Whitaker, R. D.;Y. Cho;J. Cha;H. L. Carrell;J. P. Glusker;P. A. Karplus;C. A. Batt
  26. Proteins v.9 A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 Å Streptomyces rubiginosus structures with xylitol and D-xylose Whitlow, M.;A. J. Howard;B. C. Finzel;T. L. Poulos;E. Winbourne;G. L. Gilliland
  27. Biochim. Biophys. Acta v.151 Purification, crystallization and properties of the D-xylose isomerase from the Lactobacillus brevis Yamanaka, K.