Cloning, Nucleotide Sequencing, and Characterization of the ptsG Gene Encoding Glucose-Specific Enzyme II of the Phosphotransferase System from Brevibacterium lactofermentum

  • Published : 1999.10.01

Abstract

A Brevibacterium lactofermentum gene coding for a glucose-specific permease of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was cloned, by complementing an Escherichia coli mutation affecting a ptsG gene with the B. lactofermentum genomic library, and completely sequenced. The gene was identified as a ptsG, which enables an E. coli transformant to transport non-metabolizable glucose analogue 2-deoxyglucose (2DG). The ptsG gene of B. lactofermentum consists of an open reading frame of 2,025 nucleotides encoding a polypeptide of 674 amino acid residues and a TAA stop codon. The 3' flanking region contains two stem-loop structures which may be involved in transcriptional termination. The deduced amino acid sequence of the B. lactofermentum enzyme $II^{GIe}$ specific to glucose ($EII^{GIe}$) has a high homology with the Corynebacterium glutamicum enzyme $II^{Man}$ specific to glucose and mannose ($EII^{Man}$), and the Brevibacterium ammoniagenes enzyme $II^{GIc}$ specific to glucose ($EII^{GIc}$). The 171-amino-acid C-terminal sequence of the $EII^{Glc}$ is also similar to the Escherichia coli enzyme $IIA^{GIc}$ specific to glucose ($IIA^{GIc}$). It is interesting that the arrangement of the structural domains, IIBCA, of the B. lactofermentum $EII^{GIc}$ protein is identical to that of EIIs specific to sucrose or $\beta$-glucoside. Several in vivo complementation studies indicated that the B. lactofermentum $EII^{Glc}$ protein could replace both $EII^{ Glc}$ and $EIIA^{Glc}$ in an E. coli ptsG mutant or crr mutant, respectively.

Keywords

References

  1. J. Mol. Biol. v.215 Basix local alignment search tool Altschul, S. F.;W. Gish;W. Miller;E. W. Myers;D. J. Limpman
  2. Nucleic Acids Res. v.7 A rapid alkaline extraction procedure for screening recombinant plasmid DNA Birnbiom, B. C.;J. Doly
  3. J. Biol. Chem. v.271 Sugar transport by the marine chitinolytic bacterium vibrio furnissii Bouma, C. L.;S. Roseman
  4. J. Gen. Microbiol. v.133 Mucleotide sequence of bglC, the gene specifying Enzyme $Ⅱ^{Bgl}$ of the PEP: Sugar phosphotransferase system in Escherichia coli K12, and overexpression of the gene product Bramley, H. F.;H. L. Kornberg
  5. Mol. Gen. Genet. v.257 Isolation and characterization of an aryl-β-D-glucoside uptake and utilisation system (abg) from the gram-positive ruminal Clostridium speies C. longisporum Brown, G. D.;J. A. Thomson
  6. Immunol. v.61 Sequence analysis of scrA and scrB from Streptococcus sobrinus 6715 Chen, Y. Y.;L. N. Lee;D. J. LeBlanc
  7. J. Bacteriol. v.122 Phosphorylation of D-glucose in Escherichia coli mutants defective in glucose phosphotransferase, mannose phosphotransferase, and glucokinase Curtis, S. J.;W. Epstein
  8. J. Bacteriol. v.174 Nucleotide sequences of the arb genes, which control β-glucoside utilization in Erwinia chrysanthemi: Comparison with the Escherichia coli bgl operon and evidence for a new β-glycohydrolase family including enzyme from eubacteria, archaebacteria, anf humans El Hassouni, M.;B. Henrissat;M. Chippaux;F. Barras
  9. J. Biol. Chem. v.262 The mannose permease o Escherichia coli consists of three different proteins. Amino acid sequence anc function in sugar transport, sugar phosphorylation, anf penetration of phage lambda DNA Erni, B.;B. Zanolari;H. P. Kocher
  10. J. Microbiol. Biotechnol. v.5 Cloning and expression of the gene encoding glucose permease of the phosphotransferase system from Brevibacterium flavum in Escherichia coli Kwon, I.;K. N. Lee;J.-K. Lee;J.-G. Pan;T.-K. Oh;H. H. Lee;K.-H. Yoon
  11. J. Mol. Biol. v.157 A simple method for displaying the hydropathic character of a protein Kyte, J.;R. F. Doolittle
  12. Appl. Environ. Microbiol. v.63 Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: Functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides Lai, X.;F. C. Davis;R. B. Hespell;L. O. Ingram
  13. J. Microbiol. Biotechnol. v.3 Cloning and expression of the gene encoding mannose enzyme Ⅱ of the Cornebacterium glutamicum phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli Lee, J.-K.;M.-H. Sung;K.-H. Yoon;J.-G. Pan;J.-H. Yu;T.-K. Oh
  14. FEMS Microbiol. Lett. v.199 Nucleotide sequence of the gene encoding the Cornebacterium glutamicum mannose enzyme Ⅱ and analyses of the deduced protein sequence Lee, J.-K.;M.-H. Sung;K.-H. Yoon;J.-H. Yu;T.-K. oh
  15. Annu. Rev. Biochem. v.59 The bacterial phosphoenolpyruvate: Glucose phosphotransferase system Meadow, N. D.;D. K. Fox;S. Roseman
  16. Methods in Enzymology v.101 New M13 vectors for cloning Messing, J.;R. Wu(ed.)
  17. Agric. Biol. Chem. v.51 Phosphoenolpyruvate: Sugar phosphotransferase system and sugar metabolism in Brevibacterium flavum Mori, M.;I. Shiio
  18. Biochemistry v.27 Sequence of cloned Enzyme $Ⅱ^{N-acetylglucosamine}$ of the phosphoenolpyruvate: N-acetylglucosamine phosphotransferase system of Escherichia coli Peri, K. G.;E. B. Waygood
  19. Microbiol. Rev. v.57 Phosphoenolpyruvate: Carbohydrate phosphotransferase systems of bacteria Postma, P. W.;J. W. Lengeler;G. R. Jacbson
  20. Recombinant DNA Techniques - An Introduction Rodriquez, R. L.;R. C. Tait
  21. J. Biol. Chem. v.262 Sugar transport by the bacterial phosphotransferase system. Molecular cloning and structural analysis of the Escherichia coli ptsH, ptsI, and crr genes Saffen, D. W.;K. A. Presper;T. L. Doering;S. Roseman
  22. J. Bacteriol. v.174 Proposed uniform nomenclature for proteins and protein domains of the bacterial phosphoenoplyruvate: Sugar phosphotransferase system Saier, Jr., M. M.;J. Reizer
  23. Proc. Natl. Acad. Sci. USA v.74 DNA sequencing with chain terminating inhibitors Sanger, F.;S. Nicklen;A. R. Coulson
  24. J. Bacteriol. v.171 Characterization and sequence analysis of the scrA gene encoding enzyme $Ⅱ^{Scr}$ of the Streptococcus mutants phosphoenolpyruvate- dependent sucrose phosphotransferase system Sato, Y.;F. Poy;G. R. Jacobson;H. K. Kuramitsu
  25. J. Bacteriol. v.169 β-Glucoside (bgl) operon of Escherichia coli K-12: Nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes Schnetz, K.;C. Toloczyki;B. Rak
  26. Proc. Natl. Acad. Sci. USA v.96 Deduction of consensus binding sequences on proteins that bind $ⅡA^{Gle}$ of the phosphoenolpyruvate: sugar phosphotransferase system by cysteine scanning mutagenesis of Escherichia coli lactose permease Sondej, M.;J. Sun;Y. J. Seok;H. R. Kaback;A. Peterkofsky
  27. J. Bacteriol. v.179 Identification and characterization of a new β-glucoside utilization system in Bacillus subtilis Tobisch, S.;P. Glaser;S. Kruger;M. Hecker
  28. Microbiology v.142 Lactobacillus curvatus has a glucose transport system homologous to the mannose family of phosphoenolpyruvate-dependent phosphotransferase systems Veryat, A.;M. J. Gosalbes;G. Perez-Martinez
  29. Mol. Microbiol. v.2 Suppression of $Ⅲ^{Glc}$ defects by Enzyme $Ⅱ^{Nag}$ and $Ⅱ^{Bgl}$ of the PEP: Carbohydrate phosphotransferase system Vogler, A. P.;C. P. Broekhuizen;A. Schuitema;J. W. Lengeler;P. W. Postma
  30. Gene v.33 Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 mp18 and pUC19 vectors Yanisch-Perron, C.;J. Vieira;J. Messing
  31. J. Microbiol. Biotechnol. v.8 Cloning, expressin, and nucleotide sequencing of the gene encoding glucose permease of phosphotransferase system from Brevibacterium ammoniagenes Yoon, K.-H.;H. Yim;K. H. Jung