Single-Chain Fv Fragment of Catalytic Antibody 4f4f with Glycosidase Activity: Design, Expression, and Purification

  • Jang, Chang-Hwan (Graduate School of Biotechnology, Korea University) ;
  • Chung, Hyun-Ho (Biotech Research Institute, LG Chemical Ltd./Research Park) ;
  • Yu, Jae-Hoon (Division of Applied Science, Korea Institute of Science and Technology) ;
  • Chang, Yung-Jin (Department of Agricultural Chemistry, Seoul National University) ;
  • Kim, Hyong-Bai (Graduate School of Biotechnology, Korea University) ;
  • Paek, Se-Hwan (Graduate School of Biotechnology, Korea University) ;
  • Shin, Dong-Hoon (Graduate School of Biotechnology, Korea University) ;
  • Kim, Kyung-Hyun (Graduate School of Biotechnology, Korea University)
  • Published : 1999.06.01

Abstract

Constructs, encoding a single-chain variable fragment of a catalytic antibody 4f4f (scFv-4f4f) with glycosidase activity, were made by combining the coding sequences for the heavy and light chain variable domains with a sequence encoding a linker (GGGGS). Using three different plasmid systems, single-chain antibodies were expressed separately in Escherichia coli, demonstrating significant differences in the expression level and amounts in soluble form of the recombinant protein. The protein expression from pET3a-scFv-4f4f was up to 20% of the total soluble proteins and, more importantly, the proteins were mostly found in a soluble form. An SDS-PAGE analysis of the purified single-chain proteins, yielding higher than 5mg from a 1-1 culture, showed a single band corresponding to its molecular weight of 29,100. A preliminary study shows that the expressed scFv-4f4f is catalytically active. The catalytic parameters for the hydrolysis of p-nitrophenyl-$\beta$-D-glucopyranoside by scFv-4f4f are being investigated.

Keywords

References

  1. Protein Eng. v.8 Properties of a single-chain antibody containing different linker peptides Alfthan, K.;K. Takkinen;D, Sizmann;H. Soderlund;T. T. Teeri
  2. J Mol. Biol. v.211 An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion Argos, P.
  3. Anal. Biochem. v.205 A method for increasing the yield of properly folded recombinant fusion proteins: Single-chain immunotoxins from renaturation of bacterial inclusion bodies Buchner, J.;I. Pastan;U. Brinkmann
  4. Science v.275 Structural convergence in the active sites of a family of catalytic antibodies Charbonnier, J.;B. Golinelli-Pimpaneau;B. Gigant;D. S. Tawfik;R. Chap;D. G. Schindler;S. Kim;B. S. Green;Z. Eshhar;M. Knossow
  5. Protein Eng. v.7 Multimerization behavior of single chain Fv variants for the tumour-binding antibody B72.3 Desplancq, D.;D. J. King;A. D. Lawson;A. Mountain
  6. Proc. Natl. Acad. Sci USA v.88 Construction and characterization of a single-chain catalytic antibody Gibbs, R. A.;B. A. Posber;D. R. Filpula;S. W. Dodd;M. A. Finkelman;T. K. Lee;M. Wroble;M. Whitlow;S. J. Benkovic
  7. Carbohydr Res. v.300 The measurement of affinity between ligand and antibody using ligand-induced antibody fluorescence change Glaudemans, C. P. J.;C. E. Miller;E. M. Nashed
  8. Protein Eng. v.3 Molecular modeling study of antigen binding to oxazolone-specific antibodies: The Ox 1 idiotypic TgG and its mature variant with increased affinity to 2-phenyloxazolone Holm, L.;L. Laaksonen;M. Kaartinen;T. T. Teeri;J. K. C. Knowles
  9. J. Biol. Chem. v.271 Barley β-D-glucan exohydrolases with β-D-glucosidase activity Hrmova, M.;A. J. Harvey;J. Wang;N. J. Shirley;G. P. Jones;B. A. Stone;P. B. Hoj;G. B. Fincher
  10. J. Biol. Chem. v.273 Substrate binding and catalytic mechanism of a barley β-D-glucosidase/(1,4)-β-D-glucan exohydrolase Hrmova, M.;A. MacGregor;P. Biely;J. Stewart;G.B. Fincher
  11. Methods Enxymol. v.203 Protein engineering of single-chain Fv analogs and fusion proteins Huston, J. S.;M. Mudgett-Hunter;M. S. Tai;K. McCartney;F. Warren;E. Haber;H. Oppermann
  12. Adv. Protein Chem. v.49 Antibody binding sites Huston, J. S.;M. N. Margolies;E. Haber
  13. J. Microbiol. Biotechnol. v.8 Characterization of β-galactosidase from a Bacillus sp. with high catalytic efficiency for transgalactosylation In, M. J.;J. Jung
  14. In Catalysis in Chemistry and Enzymology Strain distortion and catalysis Jencks, W. P.
  15. Mol. lmmunol. v.34 Expression and characterization of recombinant single-chain Fv and Fv fragments derived from a set of catalytic antibodies Kim, S.;D. G. Schindler;A. B. Lindner;D. S. Tawfik;Z. Eshhar
  16. Science v.252 At the crossroads of chemistry and immunology: Catalytic antibodies Lerner, R.A.;S. J. Benkovic;P. G. Schultz
  17. Cancer Res. v.51 Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody cc49 Malenic, D.E.;T. Yokota;D.R. Filpula;M.A.J. Finkelman;P. Snoy;J. Schlom
  18. Mol. Immunol. v.31 Spontaneous assembly of bivalent single-chain antibody fragments in Escherichia coli McGregor, D. P.;P. E. Molloy;C. Cuningham;W. J. Harris
  19. Immunotechnology v.1 Expression in Escherichia coli of soluble and M13 phage-displayed forms of a single-chain antibody fragment specific for digoxin: assessment in a novel drug immunoassay Navarro-Teulon, F.;S. Peraldi-Roux;T. Bernardi;M. Marin;M. Piechaczyk;D. Shire;B. Pan;M. Biard-Piechaczyk
  20. Curr. Opin. Biotech. v.9 Recent advances in glycoconjugate analysis and glycobiology Rademacher, T.W.
  21. Trends Biotech. v.16 Recombinant Fv immunotoxins and Fv fragments as novel agents for cancer therapy and diagnosis Reiter, Y.;I. Pastan
  22. Angew Chem. Int. Ed. Engl. v.30 Antibody catalysis of glycosidic bond hydrolysis Reymond, J. L.;K. D. Janda;R. A. Lerner
  23. Acc. Chem. Res. v.26 Antibody catalysis of difficult chemical transformations Schultz, P.G.;R. A. Lerner
  24. Science v.269 From molecularr diversity to catalysis: Sessons from the immune system Schultz, P. G.;R. A. Lerner
  25. Proc. Natl. Acad. Sci. USA v.91 Selection of catalytic antibodies for a biosynthetic reaction from a combinatorial cDNA library by complementation of an auxotrophic Escherichia coli: Antibodies for orotate decarboxylation Smiley, J. A.;S. J. Benkovic
  26. J. Mol. Biol. v.189 Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes Studier,F. W.;B. A. Moffat
  27. J. Am. Chem. Soc. v.116 Glycosidase antibodies induced to a half-chair transition state analog Suga, H.;N. Tanimoto;A. J. Sinskey;S. Masamune
  28. Proc. Natl. Acad. Sci. USA v.92 Expression studies of catalytic antibodies Ulrich, H.D.;P.A. Patten;P.L. Yang;F.E. Romesberg;P. G. Schultz
  29. Protein Eng. v.6 An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability Whitlow, M.;B. A. Bell;S. L. Feng;D. Filpula;K. D. Hardman;S. L. Hubert;M. L. Rollence;J. F. Wood;M. E. Schott;D. E. Milenic
  30. Angew. Chem. Int. Ed. Engl. v.331 Progress toward and antibody glycosidase Yu, J.;L. C. Hsieh;L. Kochersperger;S. Yonkovich;J. C. Stephans;M. A. Gallop;P. G. Schultz
  31. Proc. Natl. Acad. Sci. USA v.95 A glycosidase antibody elicited against a chair-like transition state analog by in vitro immunization Yu, J.;S. Y. Choi;K. Moon;H. Chung;H. Y. Youn;S. Jeong;H. Park;P. G. Schultz
  32. J. Chem. Soc. Chem. Commun. Antiboly-catalysed glycosyl transfer reactions from in vitro immunization Yu, J.;S. Y. Choi;S. Lee;H. J. Yoon;S. Jeong;H. Mun;H. Park;P. G. Chultz