2차원과 3차원 신경계 자기공명영상에서 뼈 주위에 있는 여러 조직의 신호세기 계산 및 측정

Simulation and Measurement of Signal Intensity for Various Tissues near Bone Interface in 2D and 3D Neurological MR Images

  • Yoo, Done-Sik (Brain Wave Information Team, Telecommunication Basic Research Laboratory, Electronics and Telecommunications Research Institute)
  • 발행 : 1999.03.01

초록

목적 : 본 논문은 2차원과 3차원 신경계 자기공명영상에서 뼈 주위에 있는 여러 조직의 신호세기를 계산하고 측정값과 비교 분석하는 데 목적을 두었다. 대상 및 방법 : 신경계 양성자 강조영상은 뼈를 제외한 뇌척수액과 근육 및 지방 등 모든 조직을 보여준다. 또한 자기공명영상을 이용하면 2차원이나 3차원 영상을 얻을 수 있다. 본 연구에서는 2차원 영상기법으로 2차원 고속스핀반향 (Fast spin-echo) 영상법을 사용하였고 3 차원 영상기법으로는 3차원 경사자계반향(Gradient-echo) 영상법을 사용하였다. 2차원 스핀반향 (Spin-echo)과 3차원 경사자계반향 영상법에 나타난 뇌척수액과 근육 및 지방의 신호세기를 알아내기 위해 2차원 스핀 반향과 3차원 경사자계반향의 신호세기의 이론값을 계산하였다. 2차원 고속스핀반향 영상법에서는 양성자 강조영상을 얻기 위해 긴 반복시간 (4000 ms) 과 짧은 반향시간(TE$_{eff}$ =22 ms)을 적용하였다. 3차원 경사자계반향 영상법에서는 양성자 강조영상을 얻기 위해 작은 꺽임각 (8$^{\circ}$) 과 짧은 반복시간 (35 ms) 및 짧은 반향시간 (3 ms)을 적용하였다. 결과: 2차원 고속스핀반향 영상법에서는 뇌척수액과 근육 및 지방의 영상 대조도가 우수하였고 신호 대 잡음비(SNR) 값은 39-57 사이였다. 3차원 경사자계반향 영상법에 나타난 뇌척수액과 근육 및 지방의 영상 대조도는 2차원 고속스핀반향 영상법의 결과와 비슷하였지만 신호 대 잡음비(SNR) 값은 26-33 사이였다. 신호 대 잡음비는 2차원 고속스핀반향 영상법이 3차원 경사자계반향 영상 법보다 높았고 가장자리 향상효과 때문에 2차원 고속스핀반향 영상에서 머리뼈의 가장자리를 쉽게 구별할 수 있었다. 덧붙여 2차원 고속스핀반향 영상에 나타난 뇌척수액과 근육 및 지방 사이의 대조도는 강한 신호세기와 향상된 뇌척수액의 가장자리 때문에 상당히 우수하였다. 결론 : 2차원과 3차원 신경계 자기공명영상에서 머리뼈 주위에 있는 여러 조직의 신호세기를 계산하고 측정값과 비교 분석하였다. 뇌척수액과 근육 및 지방의 계산값과 측정값의 영상 대조도와 신호 대 잡음비 값이 2차원 고속스핀반향 영상법과 3차원 경사자계반향 영상법에서 대체로 일치하였다. 그렇지만 2차원 고속스핀반향 영상에서 뇌척수액과 근육 및 지방 사이의 대조도가 우수하였고 신호 대 잡음비는 상대적으로 높았으며 상대적으로 짧은 영상시간이 소요되었다.

Purpose: To simulate and measure the signal intensity of various tissues near bone interface in 2D and 3D neurological MR images. Materials and Methods: In neurological proton density (PD) weighted images, every component in the head including cerebrospinal fluid (CSF), muscle and scalp, with the exception of bone, are visualised. It is possible to acquire images in 2D or 3D. A 2D fast spin-echo (FSE) sequence is chosen for the 2D acquisition and a 3D gradient-echo (GE) sequence is chosen for the 3D acquisition. To find out the signal intensities of CSF, muscle and fat (or scalp) for the 2D spin-echo(SE) and 3D gradient-echo (GE) imaging sequences, the theoretical signal intensities for 2D SE and 3D GE were calculated. For the 2D fast spin-echo (FSE) sequence, to produce the PD weighted image, long TR (4000 ms) and short TE$_{eff}$ (22 ms) were employed. For the 3D GE sequence, low flip angle (8$^{\circ}$) with short TR (35 ms) and short TE (3 ms) was used to produce the PD weighted contrast. Results: The 2D FSE sequence has CSF, muscle and scalp with superior image contrast and SNR of 39 - 57 while the 3D GE sequence has CSF, muscle and scalp with broadly similar image contrast and SNR of 26 - 33. SNR in the FSE image were better than those in the GE image and the skull edges appeared very clearly in the FSE image due to the edge enhancement effect in the FSE sequence. Furthermore, the contrast between CSF, muscle and scalp in the 2D FSE image was significantly better than in the 3D GE image, due to the strong signal intensities (or SNR) from CSF, muscle and scalp and enhanced edges of CSF. Conclusion: The signal intensity of various tissues near bone interface in neurological MR images has been simulated and measured. Both the simulation and imaging of the 2D SE and 3D GE sequences have CSF, fat and muscle with broadly similar image intensity and SNR's and have succeeded in getting all tissues about the same signal. However, in the 2D FSE sequence, image contrast between CSF, muscle and scalp was good and SNR was relatively high, imaging time was relatively short.

키워드