# A note on M-groups

한양대학교 수학과 왕문옥\*

#### Abstract

Every finite solvable group is only a subgroup of an M-group and all M-groups are solvable. Supersolvable group is an M-group and also subgroups of solvable or supersolvable groups are solvable or supersolvable. But a subgroup of an M-group need not be an M-group. It has been studied that whether a normal subgroup or Hall subgroup of an M-group is an M-group or not. In this note, we investigate some historical research background on the M-groups and also we give some conditions that a normal subgroup of an M-group is an M-group and show that a solvable group is an M-group.

### 0. Introduction

An irreducible complex character  $\chi$  of a finite group G is monomial if it is induced from a linear(i.e. degree 1) character of some subgroup of G. A finite group G is M-group if all its irreducible characters are monomial. Let Irr(G) be the set of all irreducible complex character of a finite group G.

One of the remaining mysteries about M-group is whether of not normal subgroups of odd M-groups must, themselves, be M-groups. In [3], Dade constructed an example of an M-group of order  $2^9 \cdot 7$  which has a non M-normal subgroup of index 2. A normal subgroup of an M-group must not be an M-group. I. Chubarov[1] proved that odd normal subgroups of M-groups are M-groups. Let G be an M-group and suppose  $N \triangleleft G$ . If N is an M-group then all of its primitive characters are linear. The converse of this statement is easily seen to be false.

<sup>\*</sup> The auther wishes to acknowledge the financial support of Hanyang University, Korea, made in the program year of 1999.

In [7], if G is an M-group and  $N \triangleleft G$  with either |N| or |G:N| odd, then N is an M-group. In [6], Isaacs proved that if G is an M-group and suppose  $S \triangleleft \triangleleft G$  is a subnormal subgroup of odd index then every primitive character of S is linear. Two are still the main problems on M-groups; are Hall subgroups of M-groups M-group? Under certain addness hypothesis are normal subgroups of M-groups M-group? In both cases there is evidence that this could be the case: the primitive characters of the subgroups in question are the linear characters.

Recently, some idea appears to take form. In [13], T. Okuyama proved that if G is an M-group and P is a Sylow p-subgroup of G, then  $N_G(P)/P$  is an M-group. In [8]. M. Isaacs showed that if H is a Hall subgroup of an M-group then  $N_G(H)/H'$  is also an M-group. In [12], G. Navarro proved that if H is a Hall subgroup of an M-group G and  $\varphi \in \operatorname{Irr}(N_G(H))$  is primitive then  $\varphi$  is linear. In [10], G0, G1, G2, G3, G3, G4, and G5, G5, G5, G6, and G6, and G6, G7, G8, G9, G

Recall that M-groups are necessarily solvable (Takeda, [16]).

A group G is said to be supersolvable if there is a normal subgroup series

$$G = G_1 \supseteq G_2 \supseteq \cdots \supseteq G_n = 1$$

with cyclic factor of prime order where each  $G_i \triangleleft G$ .

Since supersolvable groups are M-group[3], we have

 $\{\text{nilpotents}\} \subset \{\text{supersolvables}\} \subset \{M-\text{groups}\} \subset \{\text{solvables}\}.$ 

The following remarks are clear([4], [14], [15]).

- 1. A subgroup of a supersolvable group is supersolvable.
- 2. Any factor group of a supersolvable group is also supersolvable.
- 3. A minimal normal subgroup of a supersolvable group is of prime order.
- 4. The index of maximal subgroup of a supersolvable group is a prime order.

Let  $Irr(G/\theta)$  be the set of all irreducible constituents of  $\theta^G$  where  $\theta^G$  is the induced characters of G for a character  $\theta$  of normal subgroup N, and let for a character  $\chi$  of G,  $\chi_N$  be the restriction of  $\chi$  to a normal subgroup N.

In this note, we show that under certain hypothesis the normal subgroup of M-group and the solvable group are M-groups.

# 1. Normal subgroups

Proposition 1. Let  $N \triangleleft G$  and assume that G/N is solvable. If for  $\chi \in Irr(G)$ ,  $\theta$  is an irreducible constituent of  $\chi_N$  then  $\chi(1)/\theta(1)$  divides |G:N|.

**proof.** We induct on |G:N|. If |G:N|=1 then  $\chi=\theta$  and so  $\chi(1)/\theta(1)=1$ . Thus it is clear.

We assume that N < G. Let M is an maximal normal subgroup of G containing N. Since G/N is solvable, |G:M| = p is prime.

Let  $\varphi \in Irr(M)$  be a constituent of  $\chi_M$  such that  $\theta$  is a constituent of  $\varphi_N$ .

By inductive hypothesis,  $\varphi(1)/\theta(1)$  divides |M:N|.

Now we need  $\chi(1)/\varphi(1)$  divides |G:M|. Hence since |G:M|=p. Thus we have either  $\chi_M = \varphi$  is irreducible or  $\chi_M = \sum_{i=1}^p \varphi_i[5]$ .

If  $\chi_M = \varphi$ , then  $\chi(1) = \varphi(1)$  and  $\chi(1)/\varphi(1) = p$  divides |G:M|, otherwise  $\chi(1) = p \varphi(1)$  and so  $\chi(1)/\varphi(1) = p$  divides |G:M|. Hence the proof is complete.

Corollary 2. Let  $N \triangleleft G$  and assume that G/N is solvable. Let  $\chi \in Irr(G)$  if  $(\chi(1), | G : M |) = 1$  then  $\chi_N$  is irreducible.

**proof.** Let  $\theta$  be an irreducible constituent of  $\chi_N$ . Then by Proposition 1,  $\chi(1)/\varphi(1)$  divides |G:N|.

Thus we have  $\chi(1)/\theta(1)=1$  since  $(\chi(1), |G:M|)=1$ . So  $\chi(1)=\varphi(1)$ .

Thus  $\theta_N = \theta$  is irreducible.

**Theorem 3**. Let G be an M-Group and suppose that  $N \triangleleft G$  with (|N|, |G:M|) = 1. Then N is an M-Group.

**proof.** Let  $\theta \in \operatorname{Irr}(N)$  and let  $\chi$  be an irreducible constituent of  $\theta^G$ . Since G is an M-Group,  $\chi$  is monomial. So  $\chi = \lambda^G$  where  $\lambda \in \operatorname{Irr}(N)$  is linear for some  $H \subseteq G$ .

Let  $\varphi = \lambda^{NH}$ . Then we have  $\varphi^G = (\lambda^{NH})^G = \lambda^G = \chi \in Irr(G)$ .

Thus  $\varphi \in Irr(NH)$ . Hence we obtain

 $\varphi(1) = \lambda^{NH}(1) = |NH: H| \lambda(1) = |NH: H| = |N: N \cap H|.$ 

This divides |N|. Since |N| is coprime to |G:N|,  $(\varphi(1), |G:N|)=1$ . But since |NH:N| divides |G:N|, we have  $(\varphi(1), |NH:N|)=1$ . Note that M-Group is solvable(Takeda, [5]). Hence G is solvable. So NH/N is solvable. Thus by corollary 2,  $\varphi_N$  is irreducible.

But  $\varphi_N = (\lambda^{NH})_N = (\lambda_{N \cap H})^N$ . So  $\varphi_N$  is monomial. Since  $\varphi^G = \chi$ , by Frobenius

Reciprocity  $\varphi$  is a constituent of  $\chi_{NH}$ . Thus  $\varphi_N$  is an irreducible constituent of  $(\chi_{NH})_N = \chi_N$ . Since  $\varphi$  is irreducible constituent of  $\chi_N$ , by Clifford's theorem  $\theta = (\varphi_N)^{\mu}$  for some  $g \in G$ . Hence  $\theta$  is a monmial. The proof is now complete.

## 2. Characters of solvables

**Theorem 4.** Let  $N \triangleleft G$  and suppose that G/N is supersolvable. Let  $\chi \in Irr(G)$ . Then

- (1) If  $\chi_N$  is reducible then there exists a subgroup H with  $N \subseteq H \subseteq G$  such that |G:H| is prime and  $\chi$  is induced from irreducible character of H.
- (2) There exists a subgroup U with  $N \subseteq U \subseteq G$  and a character  $\varphi \in Irr(U)$  such that  $\psi^G = \chi$  and  $\psi_N$  is irreducible.
- (3) If G is metabelian(G''=1) then G is an M-group.

**proof.** (1) Let  $L \subseteq G$  be maximal with  $N \subseteq L \triangleleft G$  and  $\chi_L$  is reducible. Then G/N is supersolvable. If we take  $K \triangleleft G$  such that K/L is chief factor(K/L is minimal normal subgroup of G/L), then by the supersolvability of G/L, K/L is cyclic with order prime P and  $\chi_K \in Irr(G)$ .

```
Since (\chi_K)_L = \chi_L is reducible, we have \chi_L = \varphi_1 + \varphi_2 + \dots + \varphi_p where \varphi_i \in Irr(L) are distinct [5].
```

On the other hand,  $\chi_L = e \sum_{i=1}^{L} \theta_i$  where  $\{\theta_1, \dots, \theta_t\}$  is the conjugacy classes of  $\theta = \theta_1$  via the action of G on Irr(G) and  $t = |G:I_G(\theta)|$ , where  $I_G(\theta)$  is inertia group [5]. Hence we have e = 1 and t = p. If  $H = I_G(\theta)$ , then  $N \subseteq H \subseteq G$  and |G:H| = t = p prime. Since  $|\chi_L, \theta| = 1 \neq 0$ ,  $\chi \in Irr(G|\theta)$  and thus by Clifford's correspondence,  $\chi$  is induced from some irreducible character of H.

- (2) Let  $U \subseteq G$  be minimal such that  $N \subseteq H \subseteq G$  and  $\chi$  is induced from some irreducible character of U. Let  $\psi \in \operatorname{Irr}(U)$  such that  $\psi^G = \chi$ . Assume that  $\psi_N$  is reducible. Then by (1), there is a subgroup  $V \subseteq U$  with  $N \subseteq V \subseteq U$ , |U:V| is prime and  $\psi = \theta^U$  for some  $\theta \in \operatorname{Irr}(V)$ . Thus we have  $V \subseteq U$  and  $\chi = \psi^G = (\theta^V)^G = \theta^G$  which contradicts to the minimality of U. Hence  $\psi_N$  is irreducible.
- (3) Let  $\chi \in Irr(G)$ , we have  $G' \triangleleft G$  and G/G' is abelian. Thus by (2), there exists  $U \subseteq G$  with  $G' \subseteq U \subseteq G$  and  $\psi \in Irr(U)$  such that  $\chi = \psi^G$  and  $\psi_{G'} \in Irr(G')$ .

But by hypotheses G''=1, that is, G' is abelian.

Hence all irreducible characters are linear. In particular  $\psi_{G'} = \lambda$  is linear. It follows

that  $\psi(1) = \psi_{G'}(1) = \lambda(1) = 1$ . Hence  $\psi$  itself was linear.

Note that  $G' \subseteq U \subseteq G$  implies  $U/G' \subseteq G/G'$  be abelian, so  $U/G' \triangleleft G/G'$  and so  $U \triangleleft G$  conclude that all  $\chi \in Irr(G)$  is induced from an irreducible character  $\psi$  of a normal subgroup  $U \triangleleft G$ . Thus G is M-group.

**Lemma 5.** Let  $\chi \in Irr(G)$  be primitive and  $N \triangleleft G$ . Then  $\chi_N$  is homogeneous.

**proof.** Let  $\theta$  be an irreducible constituent of  $\chi_N$  and  $T=I_G(\theta)$ . Then there is  $\psi \in \operatorname{Irr}(T \mid \theta)$  such that  $\psi^G = \chi$ . Primitivity of  $\chi$  yields that T=G. Hence  $\theta$  is invariant in G, so  $\{\theta\}$  is a G-orbit in  $\operatorname{Irr}(N)$  and thus  $\theta$  is the only irreducible constituent of  $\chi_N$ . Therefore  $\chi_N$  is homogeneous.

**Corollary 6.** Let  $\chi \in Irr(G)$  be primitive and  $A \triangleleft G$  is abelian. Then  $A \subseteq Z(\chi)$ .

**proof.** By Lemma 5, we have  $\chi_A = e \lambda$ , where  $\lambda \in Irr(A)$  is linear. Thus we obtain  $e = \chi(1)$  and if  $a \in A$  then

 $\mid \chi(a) \mid = \mid \chi(1) \lambda(a) \mid = \chi(1) \mid \lambda(a) \mid = \chi(1),$ hence  $A \subseteq Z(\chi)$ .

Corollary 7. Let  $\chi \in Irr(G)$  be primitive and  $N = Ker \chi$ . Then every abelian normal subgroup of G/N is central and cyclic.

**Proof.** If N=1 ( $\Leftrightarrow$  Ker  $\chi=1$   $\Leftrightarrow$   $\chi$  is faithful), then by Corollary 6,  $A\subseteq Z(\chi)=Z(G)$ . But  $Z(\chi)$  is cyclic. Thus A is central and cyclic.

In general, let  $A/N \triangleleft G/N$  and let A/N be abelian, then  $A \triangleleft G$  and by Lemma 5,  $\chi_A = e \theta$  for  $\theta \in \operatorname{Irr}(A)$ . Hence we have  $\chi(1) = e \theta(1)$ . If  $n \in N$ , then we get  $\chi(1) = \chi(n) = e \theta(n)$  and thus we obtain  $\theta(n) = \theta(1)$ . Hence  $N \subseteq \operatorname{Ker} \theta$ . But  $\theta$  comes from some irreducible character of A/N. Since A/N is abelian,  $\theta$  is linear. Thus we have  $\chi(a) = \chi(1)$  for  $\alpha \in A$ , so  $A \subseteq Z(\chi)$ . But  $Z(\chi)/N = Z(\chi)/\operatorname{Ker} \chi$  is central and cyclic in G/N. [5]. Hence A/N is central and cyclic in G/N.

**Theorem 8**. Let G be a solvable. Suppose  $N \triangleleft G$  such that G/N is supersolvable and every Sylow subgroup of N for all prime is abelian. Then

- (1) There exists an abelian normal subgroup A of G such that  $A = C_G(A)$ .
- (2) G is an M-group.

**proof.** (1) Let  $A \triangleleft G$  be abelian and maximal with the property. Write  $C = C_G(A)$ . Then  $A \subseteq C$ . Assume that  $A \triangleleft C$ . Then  $C/A \triangleleft G/A$ . Let M/A be minimal normal in G/A with  $M/A \subseteq C/A$ . Then  $A \subseteq M \subseteq C$  and M/A is p-group, since G is solvable.

Case I.  $M \subseteq NA$ 

 $M = (M \cap N)A$ , and also  $M \cap N/A \cap N$  is p-group. Thus for some  $S \in \operatorname{Sylow}(M \cap N)$ ,  $M \cap N = S(A \cap N)$ . Let  $M = S(A \cap N)A = SA$ . By hypothesis, S is abelian. Since  $S \subseteq M \subseteq C = C_G(A)$  and A and S are abelian, M = AS is abelian and also  $M \triangleleft G$ ,  $M \triangleright A$ . Hence it contradicts to the maximality of A.

Case II.  $M \not\subseteq NA$ 

 $NA \cap M \triangleleft G$  and also  $A \subseteq NA \cap M \subsetneq M$ . By minimality of M/A, we have  $NA \cap M = A$  and NAM = NM. Claim that NM/NA is minimal normal subgroup of G/NA. But G/NA is a homomorphic image of G/N. So it is supersolvable. It follows that  $NM/NA \cong M/A$  has prime order and is hence cyclic. Thus M = A(m) for  $m \in M$ . Note that  $(m) \subseteq M \subseteq C_G(A)$  and (m), A are abelian. Hence M is abelian which contradicts to the maximality of A. Therefore,  $A = C = C_G(A)$  and the proof is complete.

(2) Let  $\chi \in \operatorname{Irr}(G)$  for a group G. Then there is  $N \subseteq G$  such that for some  $\psi \in \operatorname{Irr}(N)$ ,  $\psi^G = \chi$  and  $\psi$  is primitive. But N is a subgroup of G with the hypothesis. We put  $K = \operatorname{Ker} \psi$ . Then N/K satisfies the hypothesis. Hence N/K has the property that all of its abelian normal subgroup are central and cyclic. By (1), N/K is abelian. Since  $K = \operatorname{Ker} \psi$ ,  $\psi$  comes from an irreducible character of the abelian group N/K and thus  $\psi(1) = 1$ .

## References

- 1. I. Chubarov, "On normal subgroups of *M*-groups," *Trudy Sem. Petrovsk* 4(1978), 249 –256.
- 2. C. Curtis and I. Reiner, Methods of representation, Wiley Inc., 1983.
- 3. E.C. Dade, "Normal subgroups of M-groups need not be M-groups,"  $Math.\ Z.\ 133$  (1973), 313-317.
- 4. B. Juppert, Endliche Gruppen I, Springer-Verlag, 1967.
- 5. M. Isaacs, Character theory of finite groups, Academic Press, 1976.
- 6. M. Isaacs, "Characters of subnormal subgroups of *M*-groups," *Arch Math* 42(1984), 509-515.
- 7. M. Isaacs, "Primitive characters, Normal subgroups, and M-groups," Math. Z. 177 (1981), 267-284.
- 8. M. Isaacs, "Hall subgroup normalizers and characters Correspondences in M-groups." *Proc. AMS.* 109(1990), 647-651.
- 9. M. Isaacs, Algebra, a graduate course, Brooks/cole Publ. Com, 1994.

- 10. M. Lewis, "Charaters of maximal subgroups of M-groups," J. Algebra 183(1996), 864-897
- 11. M. Lewis, "Primitive characters of subgroups of M-groups." *Proc. AMS*. 125(1997), 27-33.
- 12. G. Navarro, "Primitive characters of subgroups of M-groups," *Math. Z.* 218(1995), 439-445.
- 13. T. Okuyama, "Module correspondence in finite groups," *Hokkaido Math J.* 10(1981), 299-318.
- 14. E. Schenkman, Group theory, D. Van Nostrand com. Inc., 1965.
- 15. M. Suzuki, Group theory II, Springer-Verlag, 1986.
- 16. K. Taketa, "Über die gruppen, dern dar stellungen sich sämtlich auf monomiale gestalt transformieren lassen," *Proc. Jap. Imp. Acad.* 6, 31-33.