Melt viscosity and Morphology of Reactive Blends

Coupling Agent를 이용한 Polyamide 6와 Polyester Elastomer의 반응동반 블랜드

  • Byung Kyu Kim (Dept. of Polymer Science and Engineering and Research Institute of Industrial Technology Pusan National University) ;
  • Sang Hyun Baek (Dept. of Polymer Science and Engineering and Research Institute of Industrial Technology Pusan National University) ;
  • Lee Keun Yoon (Dept. of Polymer Science and Engineering and Research Institute of Industrial Technology Pusan National University)
  • Published : 1999.03.01

Abstract

Melt blends of polyamide 6 (PA 6) with polyester elastomer (PEL) were prepared in a corotating twin screw extruder using two types of coupling agent(CA), viz. diglycidyl ether of bisphenol A (DGEBA) and 1,4-phenylene bis(2-oxazoline) (PBO). Notched impact strength of PA 6 as well as PA 6/PEL blends increased with the addition of coupling agent, especially with DGEBA and the maximum impact toughening of the blend was obtained with 0.6%(by mol) DGEBA, where a minimum domain size was observed from SEM. Melt viscosities of the untreated blends were higher than those of base resins at low frequencies. Viscosities of base resins as well as blends increased with the addition of CA, and the effect was much more pronounced with DGEBA, especially for PA 6 and PA 6-rich blends.

DGEBA(diglycidil ether of bisphenol A) 및 PBO(2-1,4 phenylene bis(2-oxazoline))를 coupling agent(CA)로, polyamide 6(PA 6)와 polyester elastomer(PEL)의 용융블렌드를 동방향 이축압출기에서 제조하였다. coupling agent, 특히 DGEBA의 첨가와 더불어 PA 6/PEL 블렌드는 물론 PA 6의 낫치 충격강도가 증가하였으며, 블렌드의 최대 충격강인화는 0.6% DGEBA 즉, 입자크기가 최소인 조성에서 나타났다. 미처리 저주파수 영역에서 블렌드의 용융점도는 기초수지 이상으로 증가하였다. 블렌드 뿐만 아니라 기초수지의 용융점도는 CA의 첨가와 더불어 증가하였으며, 그 효과는 DGEBA, PA 6 및 PA 6-rich 조성에서 더욱 뚜렷하였다.

Keywords

References

  1. Reactive Extrusion; Principles and Practice M.Xanthos
  2. Encyclopedia of Polymer Science and Engineering v.2 J.I.Kroschwitz;H.F.Mark;N.M.Bikales;C.G.Overberger;G.Menges(eds.)
  3. Polymer Blends D.R.Paul;S.Newman
  4. Toughened Plastics C.B.Bucknall
  5. Polymer Compatibility and Incompatibility H.J.Karam
  6. Macromolecules v.19 T.Shiomi;F.E.Karasz;W.J.Macnight
  7. J. Macromol. Sci. Rev Macromol. Chem. v.C7 S.Krause
  8. Polym. Eng. Sci. v.35 no.1 L.A.Utraki
  9. Polym. Eng. Sci. v.30 no.13 S.Wu
  10. J. Polym. Sci., Polyme. Lett. v.19 R.Faty;R.Jerome;P.Teyssie
  11. J. Polym. Sci., Polyme, Phys. v.19 R.Faty;R.Jerome;P.Teyssie
  12. J. Polym. Sci., Polyme. Chem. v.23 R.Faty;R.Jerome;P.Teyssie
  13. Polymer v.34 no.10 B.K.Kim;Y.M.Lee;H.M.Jeong
  14. Polym. Eng. Sci. v.33 no.20 C.J.Wu;J.F.Kuo;C.Y.Chen
  15. Science v.251 Frank S. Bates
  16. J. Appl. Polym. Sci. v.32 H.Inata;S.Matsumura
  17. Poly. Eng. Sci. v.34 no.23 S.S.Dagli;M.Xanthos;J.A.Biesenberger
  18. Eur. Polym. J. v.31 no.5 I.Campoy;J.M.Arribas;M.A.M.Zaporta;C.Marco;M.A.Gomez;J.G.Fatou
  19. Eur. Polym. J. v.26 no.2 S.J.Park;B.K.Kim;H.M.Jeong
  20. J. Appl. Polym.Sci. v.42 S.Fakirov;M.Evstatiev;J.M.Schultz
  21. Polym. Eng. Sci. v.22 no.17 M.R.Kamal;M.A.Sahto
  22. J. Appl. Polym. Sci. v.43 B.K.Kim;S.J.Park
  23. Adv. Polym. Technol. v.12 no.3 B.K.Kim;K.J.Kim
  24. J. Appl. Polym. Sci. v.56 L.K.Lee;C.H.Choi;B.K.Kim
  25. J. Appl. Polym. Sci. v.60 B.K.Kim;C.H.Choi
  26. J. Appl. Polym. Sci. v.61 B.K.Kim;I.H.Do
  27. Eur. Polym. J. v.32 no.12 I.H.Do;L.K.Yoon;B.K.Kim;H.M.Jeong
  28. Polym. Eng. Sci. v.28 I.S.Miles;A.Zurek
  29. Transport Phenomena R.B.Bird;W.E.Stewart;E.N.Lightfoot