Biodegradation of Recalcitrant Chlorinated Aromatic Compounds via Microbial Dechlorination

미생물의 탈염소화 작용에 의한 난분해성 염화방향족 오염물질의 분해

  • 채종찬 (충북대학교 자연과학대학 미생물학과) ;
  • 김치경 (충북대학교 자연과학대학 미생물학과)
  • Published : 1999.06.01

Abstract

Chlorinated aromatic compounds are one of the largest groups of environmental pollutants as a result of world-wide distribution by using them as herbicides, insecticides, fungicides, solvents, hydraulic and heat transfer fluids, plasticizers, and intermediates for chemical synthesis. Because of their toxicity, persistence, and bioaccumulation, the compounds contaminated ubiquitously in the biosphere has attracted public concerns in terms of serious influences to wild lives and a human being, such as carcinogenicity, mutagenicity, and disturbance in endocrine systems. The biological recalcitrance of the compounds is caused by the number, type, and position of the chlorine substituents as well as by their aromatic structures. In general, the carbon-halogen bonds increase the recalcitrance by increasing electronegativity of the substituent, so that the dechlorination of the compounds is focused as an important mechanism for biodegradation of chlorinated aromatics, along with the cleavage of aromatic rings. The removal of the chlorine substituents has been known as a key step for degradation of chlorinated aromatic compounds under aerobic condition. This can occur as an initial step via oxygenolytic, reductive, and hydrolytic mechanisms. The studies on the biochemistry and genetics about microbial dechlorination give us the potential informations for microbial degradation of xenobiotics contaminated in natural microcosms. Such investigations might provide biotechnological approaches to solve the environmental contamination, such as designing effective bioremediation systems using genetically engineered microorganisms.

난분해성 유기화합물의 일종인 염화 방향족화합물은 냉각제, 소화제, 페인트, 용매, 플라스틱류, 유압제, 제초제, 농약, 그리고 화학합성에 필요한 전구물질 등에 널리 사용된다. 이들은 친지질 특성을 가지므로 생물체의 세포막에 쉽게 흡착되며 먹이사슬에 의한 생물학적 농축과정을 통해 인간을 포함하는 각종 생물체에 축적된다. 그 결과 생물체의 세포막 구조가 변화되고 기능이 저해될 뿐더러 암과 돌연변이를 유발하고 $\ulcorner$환경호르몬$\lrcorner$으로서 생물체의 내분비계 기능을 교란하는 등 심각한 보건학적 그리고 환경생물학적 문제를 일으키고 있다. 염화 방향족화합물들은 벤젠고리 구조와 벤젠고리에 염소가 치환된 탄소-염소 결합을 공통적으로 가지고 있으며 벤젠고리에 치환된 염소의 수와 같은 수의 염소라도 붙어있는 위치에 따라 난분해 특징이 결정된다. 염화 방향족화합물들의 분해를 위해서는 미생물에 의한 벤젠 구조의 개환과정과 함께 벤젠 고리구조로부터 염소 치환기를 제거하는 탈염소화 과정이 반드시 일어나야만 한다. 호기적 환경에서 미생물에 의한 탈염소화는 분해 초기단계에서 dehalogenase라는 효소에 의해 촉매되는 oxygenolytic, reductive, 그리고 hydrolytic catalysis에 의해 일어나거나, 분해 대사과정 중에 저절로 염소치환기가 떨어져 나가는 경우도 있다. 탈염소화 과정을 거쳐 분해하는 미생물들을 이용한 염화 방향족 오염물질의 생물학적 분해방법은 이미 사용되고 있는 물리ㆍ화학적 방법보다 경제적이며 2차 오염의 부작용 없이 그 오염물질들을 매우 효과적으로 처리할 수 있다. 따라서 탈염소화 기작을 포함한 분해과정의 이해는 생물학적 분해의 기본적인 정보를 제공할 뿐더러 난분해성 환경 오염물질의 분해처리를 위하여 보다 집중적으로 연구해야 할 과제라고 할 것이다.

Keywords

References

  1. Crit. Rev. Biotechnol. v.10 Aerobic and anaerobic biodegradation of PCBs: a review Abramowicz DA
  2. Appl. Environ. Microbiol. v.55 Bacterial degalogenation of chlorobenzoates and coculture biodegradation of 4, 4'-dichlorobiphenyl Adriaena P;HPE Kohler;D Kohler-Staub;DD Focht
  3. Microbial Ecology (3rd Ed.) Microbial interactions with xenobiotic and inorganic pollutants Atlas RM;R Bartha
  4. Appl. Environ. Microbiol v.60 Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxycetate from Pseudomnas cepacia CSSV90 Bhat MA;M Tsuda;K Horiike;M Nozaki;CS Vaidyanathan;T Nakazawa
  5. Appl. Environ. Microbiol. v.63 Evidence that formation of protoanemonin from metabolites of 4-chlorobiphenyl degradation negatively affects the survival of 4-chlorobiphenyl-cometabolizing microorganisms Blasco R;M Mallavarapu;R-M Wittich;KN Timmis;DH Pieper
  6. J. Microbiol v.35 Dechlorination of 4-chlorobenzoate by Pseudomonas sp. DJ-12. Chae J-C;C-K Kim
  7. J. Microbiol. Biotechnol. v.8 Hydrolytic dechlorination of 4-chlorobenzoate specified by fcbABC of Pseudomonas sp. DJ-12. Chae J-C;K-J Ahn;C-K Kim
  8. Biochemistry v.31 Isolation and characterization of the three polypeptide components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS3. Chang KH;PH Liang;W Beck;JD Scholten;D Dunaway-Mariano
  9. Microbiol. Rev. v.55 Biodegradation of halogenated organic compounds Chaudhry GR;S Chapalamadugu
  10. J. Bacteriol. v.170 Isolation and characterization of a new plasmid from Flavobacterium sp.which carries the genes for degradation of 2,4-dichlorophenoxyacetate Chaudhry GR;GH Huang
  11. J. Bateriol. v.145 Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus Don RH;JM Pemberton
  12. Microbiol. Rev. v.58 Bacterial dehalogenases: Biochemistry, genetics, and biotechnological applications Fetzner S;F Lingens
  13. Appl. Environ. Microbiol. v.35 Effect of chlorine substitution on the biodegradability of polychlorinated biphenyls Furukawa K;K Tonomura;A Kamibayashi
  14. Appl. Environ. Microbiol. v.38 Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls Furukawa K;N Tomizuka;A Kamibayashi
  15. J. Bacteriol. v.177 Cloning, nucleoride sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dio-xygenase from Pseudomonas cepacia 2CBS Haak B;S Fetzner;F Lingens
  16. FEMS Microbiol. Rev. v.103 Microbial breakdown of halogenated aromatic pesticides and related compounds Haggblom MM
  17. Crit. Rev. Biotechnol. v.11 Biotransformation of halogenated compounds Hardman DJ
  18. FEMS Microbiol. Lett. v.108 Degradation of Aroclor 1221 in soil by ahybrid pseudomonad Havel J;W Reineke
  19. Appl. Environ. Microbiol. v.59 Enganced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria Hickey WJ;DB Searles;DD Focht
  20. Environ. Tox. Chem. v.9 Ecological fate, effects and prospects for the elinination of environmental polychlorinated biphenyls(PCBs) Hooper SW;CA Pettigrew;GS Sayler
  21. J. Bacteriol. v.172 Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4. Kaphammer B;JJ Kukor;RH Olsen
  22. J. Bacteriol. v.172 Cloning and characterization of tfdS, the repressor-activator gene of thdB, from the 2,4-dichlorophenoxyacetic acid catabolic plasmid pJP4. Kaphammer B;RH Olsen
  23. Kor. J. Microbiol. v.32 Cloning of dechlorination genes specifying biodegradation of toxic 4-chlorobiphenyl Kim C-K;J-C Chae;J-J Han
  24. J. Bacteriol. v.158 Enxyme recruitment in vitro:use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13. Lehrbach PR;J Zeyer;W Reineke;H-J Knackmuss;KN Timmis
  25. Biochem. Biophys. Res. Commun. v.176 Degalogenation of 4-chlorobenzoate by 4-chlorobenzoate degalogenase from Pseudononas sp. CBS3:an ATP.Coenzyme A dependent reaction Loffler F;R Muller;F Lingens
  26. J. Biol. Chem. v.261 Purification and some properties of component A of the 4-chlorophenylacetate3,4-dioxygenase from Pseudomonas species strain CBS Markus A;D Krekel;F Lingens
  27. Microbiol. Rev. v.56 Microbial reductive degalogenation Mohn WW;JM Tiedje
  28. FEMS Microbiol. Lett. v.71 Degration of 3-chlorobiphenyl by in vivo vonstructed hybrid pseudomonads Mokross H;E Schmidt;W Reinke
  29. Appl. Environ. Microbiol. v.59 Cloning and expression of the transposable chlorobenaozoate 3,4-dioxygenase genes of Alcaligenes sp. strain BR60 Nakatsu CH;RC Wyndham
  30. J. Bacteriol. v.175 Characterization of a Glavobacterium glutathione S-transferase gene involved in reductive dechlorination Orser CS;J Dutton;C Lange;P Jablonski;L Xun;M Hargis
  31. Environmental biotechnology Remediation of multimedia contamination from the wood-preserving industry Pflug AD;MB Burton;GS Omenn(ed.)
  32. Ann Rev. Microbiol. v.42 Microbial degradation of haloaromatics Reineke W
  33. J. Bacteriol. v.176 Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro-and 2-chlorobenaozte Romanov V;RP Hausinger
  34. J. Bacteriol. v.178 NADPH-dependent reductive ortho degalogenation of 2,4-dichlorobenzoii acid in Corynebacterium sepedonicum KZ-4 and Coryneform bacterium strain NTB-1 via 2,4-dichlorobenzoyl coenzyme A Romanov V;RP Hausinger
  35. J. Bacteriol. v.168 Cloning of Pseudomonas sp. strain CBS3 genes specifying dehalogenation of 4-chlorobenzoate Savard D;L Peloquin;M Sylverstre
  36. J. Bacteriol. v.172 Mechanism of enzymatic dehalogenation of pentachlorophenol by Arthrobacter sp. strain ATCC 33790 Schenk T;R Muller;F Lingens
  37. Biochem. J. v.192 Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Schmidz E;HJ Knackmuss
  38. Appl. Environ. Microbiol. v.58 Cloning and sequence of genes for degalogenation of 4-chlorobenzoate from Arthrobacter sp. strain SU Schmitz A;KH Gartemann;J Fiedler;E Grud; R Eichenlaub
  39. J. Biol. Chem. v.262 Purification and some properties of component B of the 4-chlorophenylacetate 3,4-dioxygenase from Pseudomonas species strain CBS Schweizer D;A Markus;M Seez;HH Ruf; F Lingens
  40. Science v.253 Novel enzymic bydrolytic degalogenation of a chlorinated aromatic Scholten JD;KH Chang;PC Babbitt;H Charest;M Sylvestre;D Dunaway-Mariano
  41. Microbiol. Rev. v.59 Mechanism of membrane toxicity of hydrocarbons Sikkema J;JAM de Bont;B Poolman
  42. Appl. Environ. Microbiol. v.59 Construction and characterization of heavy metal-resistant haloaromatic-degrading Alcaligenes eutrophus strains Springael D;L Diels;L Hooyberghs;S Kreps;M Mergeay
  43. Environmental biotechnology Complex industrial waste sites St. John WD;DJ Sikes;GS Omenn(ed.)
  44. FEMS Microbiol. Lett. v.41 Initial characterization of 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3 Thiele J;R Muller;F Lingens
  45. Annu. Rev. Microbiol. v.48 Designing microorganisms for the treatment of toxic wastes Timmis KN
  46. FEMS Microbiol. Lett. v.81 Cloning and expression of the Arthrobacter globiformis fcbA gene encodin degalogenase(4-chlorobenzoate-4-hydroxylase) in Escherichia coli Tsoi TV;GM Zaitsev;EG Plotnikova;IA Kosheleva;AM Boronin
  47. Water Res. v.24 Bioremediation of chlorophenol containing simulated ground water by immobilized bacteria Valo RJ;MM Haggblom;MS Salkinoja-Salonen
  48. Appl. Environ. Microbiol. v.53 Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic degalogenation of 4-chloro-,4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1 van den Tweel WJJ;JB Kok;JAM de Bont
  49. J. Bacteriol. v.174 Confirmation of oxidative degalogenation of pentachlorophenol by a Flavobacterium pentachlorophenol hydroxylase Xun L;E Topp;CS Orser
  50. J. Bacteriol. v.174 Purification and characterization of a tetrachloro-p-hydroquinone reductive degalogenase from a Flavobacterium sp. Xun L;E Topp;CS Orser
  51. FEMS Microbiol. Lett. v.81 Genetic control of degradation of dhlorinated benzoic acids in Arthrobacter globiformis, Corynebacterium sepedonicum and Pseudomonas cepacia strains Zaitsev GM;TV Tsoi;VG Grishenkov;EG Plotnikova;AM Boronin