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1. INTRODUCTION

A 6-DOF fully-parallel manipulator, also called a
hexapod, consists of a mobile platform connected
by six legs to a base through respectively spherical
and universal joints. Most commonly, the base
joints are fixed on the base while the legs are of
variable length (e.g. Fichter, 1986; Masory and
Wang, 1991). This typical design with six RRPS
serial kinematic chains, present in most existing
hexapods, will be referred to as the General
Parallel Manipulator (GPM). There exist various
other architectures of 6-DOF parallel manipulators
(see Merlet, 1997).

In evaluating the performance of a parallel
manipulator, much concem is given to the work-
space factor. As the complete workspace of a
6-DOF parallel manipulator is in a six-dimensional
(6-D) space for which no human representation
exists, different subsets of it are usually determined.
The most commonly determined subsets are the
constant-orientation workspace (Bonev and Ryu,
1999; Masory and Wang, 1992; Merlet, 1994), the
reachable workspace, and the dexterous workspace
(Kim et al., 1997). All of them are defined in the
3-D position space and are therefore easily depicted
in a spatial Cartesian coordinate system. The main
subset of the complete workspace that is defined in
the 3-D rotation space is the orientation workspace,
which is defined as the set of all attainable
orientations of the mobile platform about a fixed
point.

The 3-D orientation workspace is probably the
most difficult workspace to determine and to
represent. Fortunately, many of the 6-DOF parallel
manipulators are used for 5-axis machining
operations, and thus, the user is only interested in
the set of attainable directions of the approach
vector of the mobile platform, which is the unit
vector along the axisymmetric tool. We define this
2-D  workspace as the projected orientation
workspace.

Very few works exist on the topic of orientation
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workspace computation. The most relevant work in
this area has been presented in (Merlet, 1995),
where a hybrid method is proposed for the
determination of a 2-D subset of the orientation
workspace of GPMs. In that method, the possible
directions of a unit vector attached to the mobile
platform are mapped on a unit sphere. To do so,
the mobile platform is first rotated in discrete
angles about a fixed vector X;. Then, the possible
rotations of the mobile platform about a fixed
vector X, are geometrically investigated and sub-
sequently mapped as circular segments on the unit
sphere. Thus, that method finds only an intersection
of the orientation workspace, and can not be used
in the general case to compute the projected orien-
tation workspace. Furthermore, the method can not
be easily extended to other types of parallel
manipulators as it is strongly dependent on the
simplicity of the GPMs serial chains.

In this paper, we present a new discretization
method for computing the orientation workspace of
any parallel manipulator. The method is based on
the use of a modified set of Euler angles and the
particular representation of the orientation work-
space in a cylindrical coordinate system as this
guarantees that the orientation workspace is a single
volume. Furthermore, in the case of axisymmetric
parallel manipulators, we show that a close appro-
ximation of the projected orientation workspace can
be found directly by fixing one of the Euler angles
and finding an intersection of the orientation
workspace.

The organization of this paper is as follows. In
section 2, we describe the kinematic constraints that
limit the workspace of a GPM. Then, in section 3,
we discuss on the complex issue of representing the
orientation of the mobile platform and present a
modified set of Euler angles. Section 4 presents in
detail the proposed discretization method used for
computing the orientation workspace. Examples are
provided to demonstrate the usefulness of the
proposed modified set of Euler angles and the



particular workspace representation. Based on the
shape of the orientation workspace, section 5
presents a simple discretization algorithm for.com-
puting an approximation of the projected orientation
workspace by fixing the value of one of the Euler
angles. Examples are again given to illustrate the
easy interpretation of that 2-D workspace in a
simple polar plot. Conclusions are made in the last
section 6.

2. KINEMATIC CONSTRAINTS

We will be concerned only with the GPM,
though the same methodology can be applied to
other types of parallel manipulators, e.g. with six
PRRS kinematic chains (Bonev, 1998). An example
of a GPM is given in Fig. 1. The centers of the
base universal joints are denoted by A4;, and the
centers of the mobile platform spherical joints by B;
(i=1---6). A base reference frame is selected fixed
to the base at point O, with axes x, y, and z, such
that the base z-axis coincides with the axis of
symmetry (if such exists). A mobile frame is
chosen fixed to the tool tip of the mobile platform
at point C, with axes x', y/, and Z', such that the
mobile z'-axis coincides with the tool axis. At the
reference orientation of the mobile platform, the
orientation of the mobile platform coincides with
that of the base frame. Finally, we define the
approach vector as the unit vector along the z'-axis
of the mobile frame.

Let the orientation of the mobile platform be
represented by the 3 X3 orthogonal rotation matrix
R. For a given position (vector OC) and orientation
(matrix R) of the mobile platform we may compute
the necessary leg lengths, denoted by £, using the
following relation:

2,=[0C+ RCB,— OA;|l, for i=1-6 (1)

where vector CB'; represents the coordinates of the
center of mobile platform join i with respect to the
mobile frame, and vector OA; represents the
coordinates of the center of base joint i with respect
to the base frame. Equation (1) is the solution of
the so-called inverse kinematics problem.

There exist three main mechanical constraints
that limit the workspace of a GPM: (i) the actuators
stroke, (if) the range of the passive joints, and (iif)
the leg interference.

2.1 Actuator's Stroke
The limited stroke of actuator i imposes a length
constraint on leg i, such that

extensible
legs

mobile
platform

tool tip

Fig. 1. A schematic diagram of an axisymmetric
GPM.

Coimin <8 ;X0 maxs for I=1---6 )

where £ imin and £ ;max are respectively the mini-
mum and maximum lengths of leg 7.

2.2 Range of the Passive Joints

Each passive joint has a limited range of motion.
Let j« be the unit vector with respect to the base
frame and is along the axis of symmetry of the
universal joint at point A4;. Let the maximum
misalignment angle of that joint be «;. Let also the
unit vector along leg i be denoted by n;. Then, the
limits on base joint i impose a constraint, such that

cos “1( j ﬁ,. n; < a,;, for i=1---6. 3)

Similarly, let j 5 be the unit vector with respect to
the mobile frame that is along the axis of symmetry
of the spherical joint at point B;. Let vector j g
be the opposite vector, and with respect to the base
frame. Let the maximum misalignment angle of that
joint be B Then, the limits on mobile platform
joint i impose a constraint, such that

cos '( i 5 n;)< B for i=1--6. @)

2.3 Leg Interference
Let us assume that the legs can be approximated
by cylinders of diameter D. This imposes a
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constraint on the relative position of all pairs of
legs, such that

distance(AB;, AB) =D, for i=1--6, j=(i+1)..6 (5)

or the minimum distance between every two line
segments corresponding to the legs of the parallel
manipulator should be greater than or equal to D.
The minimum distance between two line segments
is not given by a simple formula but can be
obtained through the application of a multi-step
algorithm (Masory and Wang, 1992).

It should be pointed out at this point that, in
general, a given configuration of the parallel
manipulator may satisfy all the constraints given by
Eqgs. (2-5) and still be unattainable from the initial
assembly of the manipulator. In other words the
configuration may be incompatible with the initial
assembly configuration. A configuration is compa-
tible if and only if it can be reached through a
continuous motion starting from the initial assembly
configuration and satisfying the constraints given by
Egs. (2-5). To the best of our knowledge, no direct
concern has been given to this compatibility cons-
traint by authors applying discretization methods for
workspace evaluation (Fichter, 1986; Masory and
Wang, 1992).

3. ORIENTATION REPRESENTATION

One of the basic problems in finding the 3-D
orientation workspace is the choice of coordinates
to describe the orientation of the mobile platform.
Various redundant sets of orientation coordinates
exist, such as Euler parameters (Yang and Haug,
1994), direction cosines, etc. While they provide a
global parameterization of the orientation, they call
for a representation in at least a 4-D space. To
overcome this drawback, three Euler angles can be
used to represent the mobile platform orientation.
These angles correspond to three or more succes-
sive rotations about the base and/or mobile frame
axes. Their main disadvantage is the existence of
singularities at which the one-to-one correspondence
between the actual orientation and the Euler angles
does not hold.

Various types of Euler angles exist but they are
all difficult to interpret in the general case. Since
our goal is to determine not only the orientation
workspace but also the projected orientation
workspace, it would be advantageous to use the
same set of Euler angles in both cases. A clear
transition from the orientation workspace to the
projected orientation workspace is achieved if the
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first two Euler angles, ¢ and ¢, determine the
direction of the approach vector while the third
Euler angle, ¢, referred to as the roll angle,
corresponds to the last rotation about the mobile
z'-axis. Thus, for such a set of Euler angles, the
projected orientation workspace will be obtained by
projecting the 3-D orientation workspace onto a
2-D space defined by the angles ¢ and 4.

Probably the most intuitive choice of Euler
angles ¢ and ¢ is the one corresponding to the
azimuth and zenith angles that define the ray
direction in a spherical coordinate system. Further,
in machining, the angle & will alsoe correspond to
the #lt angle.

Up to here, we specified the requirements on the
three Euler angles with the desire to achieve a more
intuitive representation and a better correlation
between the orientation workspace and the projected
orientation workspace. Now, we impose another
requirement on the three Euler angles-the orientation
workspace should be a single and simply connected
set and, when represented in a particular coordinate
system, it should have a simple shape.

The first requirements set for the Euler angles are
met by the standard Euler angles that are defined
by first rotating the mobile frame about the base
z-axis by an angle ¢, then about the mobile y'-axis
by an angle 4, and finally about the mobile z'-axis
by an angle ¢ (Fu et al., 1987). For this choice of
Euler angles, the singularity occurs at # =0° and
the rotation matrix is

R =RAAR)(¢)R:'(¥) = RANRAq)R.(»), (6)
where Rz(-) and Ry(-) are the basic rotation
matrices.

We tried to determine and represent the orien-
tation workspace of an axisymmetric GPM for this
set of Euler angles, but despite the choice of
coordinate system, the shape of the workspace
seemed to be quite complicated. In an attempt to
achieve a simpler shape, we introduce a modified
set of FEuler angles, which to the best of our
knowledge has never been used in relation to
parallel manipulators.

In this new orientation representation, we first
rotate the mobile platform about the base z-axis by
an angle — ¢, then about the base y-axis by an
angle @, then about the base z-axis by an angle ¢,
and finally about the mobile z'-axis by an angle ¢.
Defined in this way, angle ¢ is the roll angle,
angle ¢ is the tilt angle, and angle ¢ is the angle
between the base x-axis and the projection of the



projection of the
' approach vector
in the base

. te o
mobile platform

in reference

orientation

Fig. 2. The modified Euler angles defining the orien-
tation of the mobile platform.

approach vector onto the base xy-plane (Fig. 2).
Note that for a zero roll angle, the mobile platform
is simply titled (rotated) about an axis passing
through the mobile frame center, parallel to the
base xy-frame, and making an angle with the base
y-axis. The singularity for this set of Euler angles
occurs again at orientations for which 4 =0° and
the rotation matrix is defined as

R =RAR(PRLAR(¥) = RLARYPRLARLY), (7)

As we see from Eq. (7), the relationship between
the modified Euler angles and the standard ones is
very simple-if the triplet ( ¢, 9, ¢) defines a given
orientation in the modified Euler angles, then the
same orientation is defined in the standard Euler
angles by (¢, 8, ¢— ¢). As we will see in the next
section, the modified Euler angles allows us to
represent the orientation workspace of most parallel
manipulators as a single volume having a simple
shape.

4. ORIENTATION WORKSPACE

After selecting the set of Euler angles for
representing the platform orientation, it remains to
determine the way to represent the orientation
workspace. With the selected set of Euler angles,
the maximum range of orientations is @IN[ —180°,
180°), 6=[0°, 180°], and ¢e=[ —180°, 180°). Three
alternatives exist for representing the orientation
waorkspace.

The first one is to represent it in a Cartesian
coordinate system whose axes are the three Euler
angles. Such a representation is very difficult to
interpret and is degenerate at the plane #=0°,
corresponding to a singularity, The second alter-
native is to represent the orientation workspace in
a spherical coordinate system where ¢ and 0 are
exactly the azimuth and zenith angles (Fig. 3a). The
ray length will correspond to ¢, so that the

(a) (b

Fig. 3. Two of the three possible representations of
the orientation workspace.

orientation workspace will be inside a spherical
shell, centered at the coordinate system origin. The
final alternative is to represent the orientation
workspace in a cylindrical coordinate system, where
¢ and @ are exactly the polar coordinates and ¢
is the z-coordinate (Fig. 3b).

Both the second and the third representations do
not pose any problems at the singularity 4 =0° and
are relatively easy to interpret. The second repre-
sentation is easier to implement. Simply, discretize
the range of ¢ and @, and for each pair, start to
increment the ¢ angle from -180° to +180°. At
each step, solve the inverse kinematics by applying
Eq. (1) and check all constraints defined by Egs.
(2-5). The first orientation for which all constraints
are satisfied is stored in a double array and the next
orientation for which a constraint becomes violated
is stored in a second double array. The first array
will define the inner boundary of the workspace
while the second array will define the outer
boundary of the workspace. The problem with this
representation is that the inner boundary of the
orientation workspace becomes hidden if the
maximum tilt angles are close to or more than 90°.
Furthermore, as we already discussed about the
compatibility constraint, it will not be certain that
for a given pair of angles ¢ and @, there will be
only one change from violated to all-satisfied
constraints and one from all-satisfied to violated
constraints.

To avoid these shortcomings, we chose the third
type of representation shown in Fig. 3b. In this
representation, the orientation workspace is a single
volume with no voids and no hidden regions. In
addition, the projection of the orientation workspace
onto a plane ¢=const is exactly the projected
orientation workspace. The most important property,
however, is that the need for the compatibility
check is eliminated since we always start the search
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from a configuration, which is compatible with the
initial assembly. We propose the following discreti-
zation algorithm for determining and representing
the orientation workspace:

Algorithm for the Orientation Workspace:

(Phase I) Upper Part of the Orientation Work-

space:

S1. Initialize double arrays W, , and W, ,, with
dimensions (% ,/2+1)Xn4, Wwhere n,+1 is
the (odd) number of equally spaced planes
¢= const between ¢=-—180° and ¢=180° at
which the workspace will be computed, and #,
is the number of points to be computed at each
plane  ¢=const. These arrays will store
respectively the values of ¢ and ¢ for the
points defining the upper part of the workspace
boundary.

S2. Set ¢=0°. Assume (¢., 4.)=(0°, 0°) is the
center of the horizontal cross-section of the
workspace for ¢=(°.

S3. For the current ¢, construct a polar system at
(¢.,0.). Starting at x4 equally spaced
angles, increment the polar ray, solve the
inverse kinematics, and apply the constraint
checks defined by Egs. (2-5) until a constraint
is violated. The values for ¢ and @ at the
point of violation are written into the two
double arrays.

S5. Compute the geometric center (¢ ., d,.) of the
workspace cross-section, which will serve as the
assumed center for the next cross-section. If ¢
=0°, store the geometric center and repeat only
once step 3 with that new geometric center and
then jump to step 5.

S6. Set ¢= ¢+360°/ny.

S7. Repeat steps 3 to S until ¢ becomes greater
than 180° or the last horizontal cross-section of
the workspace is a single point (i.e. ¢, is
reached).

S7. Set ¢ e = ¢—360° /1.

(Phase II) Lower Part of the Orientation Work-

space:

S8. Initialize double arrays W, and W,
with dimensions (7 4/2)X ny.

S9. Set ¢=—1360°/n,. Assign to (¢.,8.) the
values that were stored in step 4 for ¢=0(°.

S10. Perform the same as in step 3.

S11. Compute the geometric center (¢ ., 6.) of the
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workspace cross-section, which will serve as
the assumed center for the next cross-section.
S12. Set  ¢= ¢—360°/ny.
S13. Repeat steps 10 to 12 until ¢ becomes less
than -180° or the last horizontal cross-section
of the workspace is a single point (i.e. ¢, is

reached).
S14. Set ¢ i, = ¢+ 360°/ny.

(Phase III) Postprocessing and Plotting:

S15. Transfer the values from W ,, and W ,; to
W ,, and from Wy, and Wy ; to Wy, which
are double arrays of dimension N, xn,, where

N y=(¢ max— ¢ min)/(360/7 ;) + 1.

S16. Transfer W , and W, into X, Y, and Z, so
that X[i, j/1=Wl[i, j] cos(W ,[i, /1), Y[i, j1=
Woli, j1 sin(W ,[i, jD), and Z[i, jl=
¢ max — (i—1)(360/n ), where ;=1--N, and
j=1-ny, and X[i, j1=XI[i, 11, Y[ j1=YI,
1}, and Z[i, j]1=Z[i, 1], where ;=1..N, and
J=ngst1l.

S17. Plot the closed surface whose nodes are
defined in the double arrays X, Y, and Z.

The proposed algorithm was implemented in
MATLAB with 7,=180 and #,=120. Two

examples are presented here. In the first (Fig. 4),
the orientation workspace is computed for a
position at which point C lies on the axis of
symmetry of the parallel manipulator. Consequently,
we may observe in Fig. 4b the symmetrical shape
of the orientation workspace with respect to the
axis #=0°. In the second example (Fig. 5), the
orientation workspace is computed for a position at
which point C is far from the axis of symmetry of
the parallel manipulator and near the boundary of
the constant-orientation workspace for the reference
orientation. Note, correspondingly, how the axis of
the orientation workspace is shifted away from the
axis 8=0°.

The computation time of the proposed method
was established at about 40 min on a 350 MHz
Pentium II based PC with 256 Mb RAM. It was
observed that more than 70% of the computation
time goes for the leg interference check. On the
other hand, for this GPM as well as for other
parallel manipulators (Bonev, 1998), it was observed
that the main constraint that is violated is the one
on the range of the platform joints, i.e. Eq. 4. In
fact, leg interference was never encountered. Thus,



Fig. 4. (a) Perspective and (b) top views of the
orientation workspace of the GPM at the
position OC = [0, 0,-1300 " for which ¢ max =
84° and ¢ min =-84°.

Fig. 5. (a) Perspective and (b) top views of the
orientation workspace of the GPM at the
position OC =[200, 200, -950]" for which ¢
max = 72° and ¢ min = -72°.

for some parallel manipulators, the leg interference
check can be disabled, resulting in a great reduction
of the computation time.

5. PROJECTED ORIENTATION WORKSPACE

The projected orientation workspaces for the
examples given in Fig. 4 and Fig. 5 are respectively
shown in Fig. 4b and Fig. 5b (the top views of the
orientation workspaces). In other words, the
projected orientation workspace can be found by
first finding the orientation workspace. As we saw
in the previous section, however, the computation
of the orientation workspace is a complex and
time-consuming task and is often of no direct
interest (e.g. in 5-axes machining). Thus, for some

applications, it would be beneficial to find directly
the projected orientation workspace.

Now, observe again Figs. 4b and 5b. The thick
curves that may be seen there are the cross-sections
of the boundary of the orientation workspace for ¢
=0°. It was observed that those curves give a very
good approximation to the projected orientation
workspace when point C is located near the vertical
axis of symmetry of the parallel manipulator (Fig.
4b) and a fair one when it is far from it (Fig. 5b).
Therefore, with the assumption that the reference
orientation is inside the orientation workspace we
may propose the following two-dimensional discre-
tization algorithm for the computation of the
approximated projected orientation workspace.

Algorithm for the Projected Orientation Work-

space:

S1. Initialize the array Wy with length # ;+1,
where x4 is the number of points to be

computed to define the boundary of the
projected orientation workspace. This array
will store the values of ¢ for each discrete
value of ¢.

S2. Set ¢=0° i=1, and 4 =0°.

S3. Set 9= g+ 468, where A6 is the discretization
step.
S4. Solve the inverse kinematics problem and
check all constraints given by Egs. (2-5).
S5. Repeat steps 3-4, until @ becomes 180° or a
constraint is violated.

S6. Set Wy[il=0, i=i+1 and ¢=(i—1)(360/% ,).

S7. Set 9= 60— m46, where m is the number of
steps to go back.

S8. Repeat steps 3-7, until i becomes equal to
n4t1.

S9, Set Wy [n;+1]1=Wy [1].

S10. Draw a polar plot with W, defining the ray
length at 0°, 360°/#% 4, 2(360°/% 4), ---360°.

The proposed algorithm was again implemented
in MATLAB. Fig. 6 shows the approximated
projected workspaces for the same positions as
before. In this implementation, » ;= 360, 46=0.1°

and m=5. These values guarantee a very smooth
curve defining the projected workspace, while still
the computation time (including leg interference
check) is quite small-about 20 sec on the same PC.
The computation time can be further reduced by
implementing a more sophisticated search procedure
for determining the first point of the workspace
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180°

-90°

Fig. 6. Close approximation of the projected orien-
tation workspace of the GPM for the
positions (a) OC=10,0, -1300]" (6 min = 384°,
Omax=441°) and (b) OC =[200, 200, -950]"
(6 min=21.0°, € max = 50.3°).

boundary, i.e. at ¢ =0°.

One point to note is that the proposed algorithm
works well only for parallel manipulators that
exhibit a symmetry about the base z-axis. Such
parallel manipulators are, for example, most motion
simulators, as well as a number of commercial
hexapod machines. We also make the assumption
that the reference orientation is inside the orientation
workspace. Thus, another more general approach
should be sought for the parallel manipulators with
no axial symmetry.

Let us note that Merlet's algorithm can also be
used with the proposed modified set of Euler angles
to compute the same approximation of the projected
orientation workspace as the one found by our
discretization method. For that purpose, the range
of the angle ¢ is discretized in the range
[0°, 180°), and then for each wvalue, Merlets
algorithm is applied to obtain geometrically the
range of the tilt angle . Note, however, that his
algorithm is much more difficult to implement and
we do not expect that it will be faster than the
proposed simple discretization method.

6. CONCLUSIONS

A general discretization algorithm for computing
the three-dimensional orientation workspace was
presented in this paper. The algorithm was based on
a set of modified Euler angles and a particular
representation of the orientation workspace. The
two-dimensional projected orientation workspace
was clearly defined and a simple discretization

46 - ICASE 1999/3

algorithm was introduced for computing an
approximation of it in the case of axisymmetric
parallel manipulators.

While we believe we introduced a valuable
discussion on the complex issue of orientation
workspace of parallel manipulators, our main
contribution is for the analysis of those parallel
manipulators with an axis of symmetry, used as
5-axis machining centers. The users of such hexa-
pods can take full advantage of the application of
the method proposed for the computation of an
approximation of the projected orientation work-
space. In addition, the proposed modified Euler
angles and their property may eliminate the need
for complicated trajectory planning algorithms for
orienting the mobile platform-just assign values for
¢ and @, and keep ¢ always zero. The latter
guarantees attainment of almost all directions of the
approach vector within the projected orientation
workspace.

We pointed out that the hybrid algorithm
proposed by Merlet (1995) cannot be used for
finding the exact projected orientation workspace.
Thus, our next goal will be to devise a fully-
geometrical algorithm for computing the exact
projection orientation workspace of parallel manip-
ulators based on the vertex space concept discussed
in (Bonev and Ryu, 1999).
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