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An Improved 2-D Moment Algorithm
for Pattern Classification

Myoung-Young Yoon*
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Abstract We propose a new algorithm for pattern classification by extracting feature vectors based
on Gibbs distributions which are well suited for representing the characteristic of an images. The
extracted feature vectors are comprised of 2-D moments which are invariant under translation, rotation,
and scale of the image, less sensitive to noise. This implementation contains two parts feature
extraction and pattern classification. First of all, we extract feature vector which consists of an
improved 2-D moments on the basis of estimated Gibbs distribution. Next, in the classification phase,
the minimization of the discrimination cost function for a specific pattern determines the corresponding
template pattem. In order to evaluate the performance of the proposed scheme, classification experiments
with training document sets of characters have been carried out on SUN ULTRA 10 Workstation

Experiment results reveal that the proposed scheme has high classification rate over 9%,

1. Introduction

An essential issue in the field of pattern analysis is
the classification of objects and characters regardless
of their positions, sizes, and orientations. In the recent
computer vision literature there has been increasing
interest in use of statistical techniques for classifying
and processing image data. Moments and function of
moments have been extensively employed as the
invariant global features of an image in pattemn
recognition, image classification, target identification,
and scene analysis[1]. The goal of a typical computer
vision system is to analyze images of a given scene
and classify the content of the scene. "Good” features
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are those satisfying the following requirements: (i)small
interclass  invariance-slightly different shapes with
similar general characteristics should have numerically
close values; (ai)large interclass separation— features
from different classes should be quite different
nurnerically(2].

These features may be divided into five groups—
Visual features(edges, texture and shape), Transform
coefficient  features(Fourier  descriptors),  Algebraic
features(based on matrix composition of the image),
Statistical features (moment invariant), Differential
invariant (used especially for curved objects). Since
statistical features are invariant under translation,
rotation, size of the pattemns, the moments are very
useful features for pattem classification. Statistical
image analysis concerns the measurement of
quantitative information from an image to produce a
probabilistic description.  In [3, 4], their proposed



moments that provide features for classification of
pattems have been used for a number of image
classifying applications. Their proposed moments are
calculated by wusing the intensity at each point.
However, their performance for pattern classification is
poor since the moments did not included spatial
information which is the characteristic of the most
images. The spatial information represents statistical
dependence(or spatial continuity) of the pixel value at a
lattice point on the those of its neighbors. Previously,
many researchers considered image processing using
spatial information(s, 6. 7, 8]. Gibbs random field
However, their works are concemed with only both
restoration and segmentation.

In this paper, we propose a new algorithm for
pattem classification using an improved two
dimensional (2-D) moments on the basis of Gibbs
distributions. Gibbs distribution which are well suited
for representing spatial continuity that is the
characteristic of the most images(6, 9]

2. GRFs for Pattem Classification
We review the basic definition and the properties of

Gibbs random fields(GRFs). And we also present a
particular class of Gibbs distribution that is used in the
image model of this paper.

2.1 Gibbs random fields on finite lattices

We focus our attention on discrete 2-D random
fields defined over a finite N,xN, rectangular lattice of
points(pixels) defined as L={(x,y) :1<x<N,, 1<y<N,).
Suppose M= {m,} represents a image, where m,
measures the grey-level of the pixel in the x—t row
and y—th column Let 7 be neighborhood system
defined over the finite L. A random field M={y,} on
L has a Gibbs distribution or equivalently is a Gibbs
random field with respect to 7 if and only if its joint
distribution is of the form [9, 10]

AM=m) = -%exp(—-E(m)}
Z =ZexplE(m)) §))]
B(m) = Z.V{m)
where Z is a nommalizing constant, called the partition
function; E(m) is energy function; ¢ is a clique, a set

of sites(including single sites) such that any two
elements in the set are neighbors of each other; C is
the set of all cliques of a lattice-neighborhood pair
(L,7); and V.m) is the potential associated with

clique C, arbitrary except for the fact that it depends

only on the restriction of m to C. Let 7" be the 7th

order neighborhood system. Clique types for the
first-order and second-order neighborhoods systems
are depicted in Figure 1. The source of the revived
interest in Gibbs distribution(GD), especially in the
context of image modeling and processing, is an
important result known as the Hammersley-Clifford
theorem. Besag [10] derives an expression for the joint
probability AM=m) in terms of the conditional
probabilities(local characteristics) P(M,y (7).
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<Figure 1> Neighborhood systems 7' and 7%, and their

associated clique types.

Equivalently, P(M,, = m,)n,) = exp{— E(m,)} where
E(m,,) is the energy function for pixel site (x,3). By
choosing V.m) properly, a wide varety of
distributions both for discrete and continuous random
fields can be forrmulated as GD. The GD
characterization in some applications provides a more
workable spatial model [11].

2.2 Gibbs distribution for pattern classification

In this subsection, we present a particular class of
(GD), which is used to estimate the parameters of
Gibbs distributed image. We assume that the random
field M consists of binary-valued discrete random
variables {M,,} taking values in 9= {w,w,). To
define GD it suffices to specify the neighborhood
system#, the associated cliques and the clique



potentials V(m)'s. Here, it is assumed that the random

field is homogeneous, that is the clique potentials
depend only on the clique type and the pixel values in
clique, but not on the position of the clique in L. The
distribution is specified in terms of the second order
neighborhood system #°. Figure 2 shows the parameters
associated with clique types, except for the single pixel

clique.
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<Figure 2> The parameters associated with clique
types.

The clique potentials associated with »* are defined
as follows.

Vc(m,y)={g§ :)fth:;l:w:: e,w's in ¢ are equal @
where ¢ is the parameter specified for the clique type
c. For the single pixel cliques, the clique potential is
defined as

Vdmy)=a; for m = w,. 3

The parameters a, control the percentage of pixels in
each site, that is the marginal distribution of the single
random variables M,’'s, while the other parameters

control the size and direction of clustering.

3. Estimation of Parameter in a GD

In this section, we describe a parameter estimation
method of Gibbs distributed image since calculation of
conditional 2-D moment requires the estimated
parameters of Gibbs distribution. The most commonly
used parameter estimation method to date is the
so—called "coding method,” first presented by Besag[10].
It requires the solution of a set of nonlinear equations.
Therefore, it is cumbersome and difficult to use
reliably. In view of the practical difficulties involved in
using the coding method[12], we describe an alternative
parameter estimation scheme for finite range space
GRF, which consists of histograming and a standard,
linear, least squares estimation as its components. We
present the formulation in terms of a second order
neighborhood system 7%, although its extension to any
order is possible.

Suppose M is a GD of the class described in
Section 22, with a discrete range space of

Q= {w,, w,}. A realization 72 of this random field is

available to be used in estimating the parameters of
the distribution. Consider a site (x,3 and its

neighborhood 7,,. For convenience of notation, let $
represent m,, and A" represent the vector of the
neighboring values of m,, that is,

A= [uy, up, w3, us, 0y, V3, v3, 4] T )]
where the location of %;'s and ¥;’s with respect to S

are shown in Figure 3.

<Figure 3> m ., and 7] 4.

We define indicator functions

—1 if 8, =8,="=0,
X6y, 6, ...,ak)={ &)
1 otherwise
and
-1 s=w,
],.,(s)=' ®
0 other wise.

We can express the potential functions of the GD in
terms of these quantities. Let V(s,4°,68) be the sum of
the potential functions of all the cliques that contain
(x,3), the site of s. That is Ws,A’, 0= cchc(m)

where @ is the parameter vector

0=y, as, B1, B2, 71, 72, 73, 70, §1). D
Using the clique potentials for this class of GD we can
write W(s5,4",0) as W(s, X', 8)=p"(s,4')@ where

ols, = [}(9), ]s), (s, v2) + Ks,v,)),(Ks, v;) +
I(s, 13)),(I(s, uy, v9) + K(s, 1y uz) + I(s, uy vy)),
(K(s, 1y u) + I(s, uy us) + I(s, uy vy)),
(I(s, 1, v7) + K5, uy ug) + K, u3 v3)), ®
(I(s, uy, ug) + K(s, uy v) + Ks, uy v9)),
(s, uy, 0y, uy) + I(s, 2y 03, u3) + I(s, w3 v3, 24)
+ Ks, uq,vq, )17,

Now suppose P(s,A) is the joint distribution of the
random variables on the 3x3 window centered at
(x,» and P(A") is the joint distribution of the
random variables on 7, only. Then the conditional
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distribution P(dA°) is given by the ratio of P(s,A) to
P(A). It follows from the GRF-MRF equivalence and
the resulting local characteristic that

’ - Ws. 2.0
R

0) @

where Z(1',6) is the appropriate normalizing constant.
Hence

~Ws 4,80 _ Z(/l' 0)
BEay =R (10)

is obtained. Note that the right-hand side of (10) is
independent of s. Considering the left-hand side of (10)
for any two distinct values of s, eg., s=j and s=4,
we have

(p(k, )~ (G, AN 6= In BHEAL (D

where pT(k,A)0= Wk, A',0). Consideration of all
possible triplets (j, k£, A7), j<k, generates from equation
(11) a large set of linear equations, which may be
solved for @ by least squares procedures. The question
that remains to be answered, now, is how to determine
or estimate K(s,A") for all (s,A) combinations using a
single or a few realizations. We propose to estimate
P(s,A’) using histogram techniques.

4. Improved 2-D Moments and
Classification

The geometric moments proposed by many
researchers{4, 13] have not included spatial information
which is the characteristic of most images. However,
we propose conditional 2-D moments which include
spatial information by using the estimated conditional
Gibbs distribution.

4.1 Improved 2-D moment based on GD

The basic and classical moment, A regular 2-D

moment of order (k+1) is defined by [2, 13]

= | R 12)
where Ax,y) is the intensity at a point (x,3) in the
image and b, /=0,1,2,--. Since this two dimensional

integration can be viewed as if the image irradiance
function Ax,y) is projected to onto the moment kemnel

{x*y'}, the regular moment will be referred as
geometric moment (GM). We propose an improved 2-D
moments by using the estimated Gibbs distribution,
instead of Ax,»). Let ¥ be the estimated parameter
vector of Gibbs distributed image described in Section
3 The parameter vector 8 measures the strength of
interaction between pixels. Also, the clique potentials
{Vmy)} specify the local characteristics
PM,=m, n,). By the MRF property we see that
P(My=m 0, )= P(My=m,, |L\(m,,)) where L\(m,,)
is denotes the set {my :(k D=*(i,/)}. In the general
2-D form and for binary-valued images, the
corresponding conditional 2-D moments is given by the
following steps.

® Step 1) Caculate the centroids =z, y of the
considered shape as follows. Let K-) be the

indicator function.
_ N, N
x= 21 yzl x P(My,=myln,,) (13)
y = ﬁ:l ﬁﬁ yP(My= myly,) (14)

® Step 2) Calculate o, and ¢, are the standard
deviation of the image with respect to the coordinates
x and y, given by

o = J ﬁl ﬁl(x—§)2P(Mu= Myl ) 315

N. 0, _
o = | & B9 PUMo= myln). (16)

® Step 3) Calculate the 2-D conditional moments
from (15) and (16) for £=0,1,2,..., and /=0,1,2,... .
And then, we store these moments to a feature vector.

o= BEES (53 pmmon, )
The above moments are invariant under translation
and magnification of the image, but not under rotation.
Thus, In order to use them as classification features
we have to normalize the moments with respect to
rotation by multiplying the coordinates of the image by
e’ where ¢ is the rotation change of the object.

<Table 1> The values of the proposed moments

Moments | 7yl 1yl 75| 76| 7a| 7a| 7a| 70| 7ol 74| 70| 7u
Template | 1.0¢{ 25} 12X | 411 39:| 7.0 1.1} 292] 1.0] 30(| 1.5} 3¢¢

Shape 1 | 1.0f] 263} L.3H 415} 39:) 7.2 1.0} 28| 1.22{ 317 30¢f 318
Shape 2 | 10§ 24 1.01] 20¢) 1LOE| 57} -1.1 32]-19] 42[-29] 7%




Table 1 shows the 2-D normalized moments of
template letter C, as well as two similar letters(
distorted C and O) of Figure 4.

(a) template  (b) shape 1 (c) shape 2
<Figure 4> The template and the shapes to be tested.

4.2 Classification

In order to classify patterns, we define a the
discrimination cost function (DCF) F(:#,v) which is
defined by

Fli,0)= g;[ T,,— U (18)

where T,; denotes thej—th feature of the v—th
template, U, denotes the j—th feature of the i—#h
shape under consideration and & is the dimension of
the feature vectors. The minimization of the index
F(i,v), v=1,2,... for a specific shape i determines
the corresponding template ». The proposed DCF is a
kinds of Euclidean distance between an arbitrary
pattem vector U; and thev—# prototype vector T ;.
Since the proposed DCF only require some simple
analytic algebraic calculations, It is characterized by
low computation cost. The ideal discrimination of a
shape corresponding exactly to a template, without any
noise and computational error, the index F(7,v) should
be zero. However, in practice, the discrimination is
clear if F(i,v) is sufficiently smaller in comparison
with the other templates, as well as small enough
itself. Table 2 shows the discrimination functions of
the letters of Figure 4. In Table 2 it is seen that
F(i,v) is sufficiently smaller for the distorted C.

<Table 2> The DCF of the shapes of Fig. 4.

Fltemplate "C", shape 1 "C") = 217
F(ternplate "C", shape 2 "0") = 8053

5. Experimental Results

In order to illustrate the performance of the proposed

moment for pattern classification, we carried out the
following experiments was carried out. The training
document consists of 10 lines of 52 characters each.
Two documents were created for testing the
performance of the proposed classification method on
the basis of the extracted feature vector. Each
document consists of 24 lines 52 characters each.
Figure 5 shows the overall block diagram of the
proposed method for classification of pattemns, where it
is shown that a document to be processed is at first
scanned Then the classification feature vectors are
extracted by formulae (13) through (17). These features
are sent to a classifier, which is described by forrmula
(18), for a decision in order to identify the input
character.

Input Feature isi
Scanner Classifier Decision
Patiern Extractor
F——
Reference Moments

<Figure 5> Overview of the proposed method for
classification of patterns.

The gross structural features of the shape can be
better characterized by the proposed moments derived
from the silhouette. In our experiments we use only
silhovette moments since these moments are less
sensitive to noise. The used feature vector F, for the
templates is considered to be F,= [xg, gy, 75, 716, 7,
g, X305 X40s 5» 7g0s T10» Tapl T

A classification simulation was run six times. The
first simulation used a library set of 52 feature vectors
derived from the first line of characters of the training
docurment. The second simulation used two library sets
derived from the first two lines of the training
document. The third, fourth, fifth and sixth simulations
used four, six, eight and ten library sets, respectively.
The classification rates resulting from these simuilations
are presented in Table 3. As Table 3 reveals, we can
achieve better than 9% increase in classification rates
when we use eight or ten library sets. Since the
proposed 2-D the improved moments have properties of
the affine or geometric moments, as well as spatial
information which describe dependance between pixels,



our proposed method was superior to other methods
using the affine moments and the geometric moments,
respectively.

<Table 3> The classification rates

No of | Flusser's method | Tsirikolias’'s method| Proposed method
library | using the affime { using the geometric | using the 2-D
sets moments (%) moments (%) moments (%)

1 3 ¥ 20

2 85 81 6

4 o} s3] &8

6 N5 &8 B

8 k<] 91 B

10 6 A5 BS

6. Concluding Remarks

In this paper we propose a new algorithm for pattern
classification using an improved two dimensional (2-D)
moments based on GD. Experiment results reveal that
the proposed scheme has high classification rate over
98%. The proposed method appears to be efficient with
respect to the existing ones, since it shares the
following advantages. (i)The discrimination process is
invariant under translation, scaling and rotation of the
considered shape. (ii)Fast processing, since calculations
of the moment are simple. (ii)Each shape is uniquely
described (iv)It is possible to consider the pattem itself
rather that its contour.

The success of pattern classification depends on how
good the used clique parameter @ fits characteristic of
the image. Upon ocompletion of the pattem
classification, we will focus our efforts on further
development of the clique functions.
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