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Abstract

The advent of very large scale integration(VLSI) has had a tremendous impact on the
design of fault-tolerant circuits and systems. The increasing density, decreasing power
consumption, and decreasing costs of integrated circuits, due in part to VLSI, have made it
possible and practical to implement the redundancy approaches used in fault-tolerant
computing.

The purpose of this paper is to study the many aspects of designing fault-tolerant
systems in a VLSI environment. First, we expound upon the opportunities and problems
presented by VLSI technology. Second, we consider in detail the importance of design
mistakes, common-mode failures, and transient faults in VLSL Finally, we examine the
techniques available to implement redundancy using VLSI and the problems associated with
these techniques.

1. INTRODUCTION

In fact, today’s technology often allows multiple computers to be a single Integrated
Circuits (ICs) so that fault detection or fault tolerance is attained within the IC itself. IC
simply implies that more than one component is placed on a single piece of semiconductor
material, and all of the components and associated wiring are an integral part of the IC
and cannot be physically separated [8). An IC is in contrast to discrete devices, where
each component is packaged separately and all wiring is external to the component itself.
An IC, however, might contain a number of transistors, diodes, and other elements on a
single piece of semiconductor material and placed in a single package. The actual
semiconductor material in an IC is called a chip or die and can have an area of several
hundred square mils. The chip is usually placed in ceramic or plastic packages that contain
metal pins to provide electrical connections.

The number of components placed on an IC is representative of the level of integration
[3]. When IC technology was first introduced only one or two gates could be placed on a
single chip. Today, however, it is possible to place more than 100,000 gates on a single
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chip. Small-Scale Integration(SSI) refers to an IC that contains fewer than 10 logic gates
or, equivalently, fewer than 30 transistors. Medium-Scale Integration(MSI) refers to ICs
containing between 10 and 100 logic gates (30 to 300 transistors). Large-Scale
Integration(LSI) implies that an IC contains 100 to 10,000 logic gates (300 to 30,000
transistors). Finally, Very-Large-Scale Integration (VLSI) represents ICs containing more
than 10,000 logic gates (more than 30,000 transistors). '

The precise number of logic gates used in the definitions of SSI, MSI, LSI, and VLSI
are not universally accepted. However, it does appear that most people accept the 10,000
gate level as the beginning of VLSI because ICs with fewer than 10,000 gates can be
manufactured with the same technology, whereas those containing more than 10,000 gates
typically require new technology.

There are a number of advantages to using ICs rather than discrete devices, and many
of the advantages are extremely important in the design of fault-tolerant circuits and
systems. Consequently, the three most important advantages of using IC technology in the
design of fault-tolerant systems are : (1) Reduced power consumption (2) Increased
reliability (3) Decreased size and weight.

First, when the majority of the connections in a system are made on a single chip, the
parasitic capacitances are reduced, and the power required to drive signals throughout the
system is also reduced. Consequently, over all power consumption is minimized. Second,
placing components on a single chip reduces the probability of loose connections, broken
wires, and poor solder joints, therefore decreasing the overall failure rate. Finally,
integration simply decreases size and, as a result, physical weight and volume. Many of
the critical applications that require fault tolerance also mandate minimum weight and
volume.

2. FAILURE MODES IN VLSI TECHNOLOGY

As might be expected, it would be extremely difficult to list all the possible causes of
failure in an integrated circuit simply because the list would be extremely long. In addition,
the list of faults would undoubtedly be different for bipolar devices than for metal-oxide
semiconductor(MOS) ones. Finally, we would expect that changes in technology would
produce subsequent changes in the distribution of faults among the various categories ; for
example, the common faults in SSI technology may be insignificant in LSI and VLSI
technology.

In this paper, we want to discuss the common categories of faults that occur in
integrated circuits and investigate the changes that we have seen in the distribution of
faults as we have progressed from SSI to MSI and to even higher levels of integration.
Note that the list of faults is in no way exhaustive ; it is intended to illustrate the types
of faults that can occur.

At the highest level, fault in ICs can be divided into two primary categories ; (1) those
resulting from the manufacturing process and (2) those resulting from wear-out or other
phenomena in the field [9]. During the manufacturing process, scratches, dust, or other
foreign particles often corrupt a device.
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Likewise, the improper packaging of the device or the bonding of the leads to the
actual semiconductor material can result in a failed device. While a device is in operation,
electromagnetic fields can wear down an insulator and cause a short to occur.

Similarly, moisture can become trapped in the IC and produce metal corrosion that leads
to broken lines or degraded conductivity of a particular device.

We will consider seven categories when examining fault distributions ; metal systems,
diffusion, foreign matenal, oxide, package and bonding, chip mounting, and misapplication.

3. DISTRIBUTION OF FAULTS IN VLSI TECHNOLOGY

Now that we have identified some of the major causes of faults in ICs, we will examine
the percentage of total faults that is the results of each individual cause. We will examine
this fault distribution as a function of the level of integration (SSI, MSI, and so on).
Unfortunately, very little data is available on advanced VLSI devices because such devices
are just now beginning to be manufactured and used in large quantities. However, by
examining the data for SSI, MSI, and LSI, we can see a number of trends that clearly
indicate the dominant sources of faults in higher levels of integration.

Table 1 shows the fault distribution percentages for bipolar ICs as a function of the
technology [9].

First, the percentage of faults resulting from misapplication has been steadily decreasing
as a function of the integration level. In SSI technology, misapplication accounted for 35%
of the faults, whereas in LSI technology misapplication accounts for slightly more than 5%
of the faults. Several factors can explain the marked decrease in the percentage of
misapplications.

(Table 1) Fault Distribution Percentages for bipolar ICs

Failure Mode SSI(%) | MSI(%) | LSK(%)
Metal Systems 95 175 270
Diffusion 80 12.0 245
Foreign Material 40 11.0 120
oxide 175 200 135
Package & Bonding 135 7.0 4.0
Chip Mounting 55 3.0 15
Misapplication 350 16.0 55
Miscellaneous 70 135 12.0

Second interesting feature apparent in Table 1 is the significant decrease in the
percentage of faults due to packaging and bonding. Over 13% of all faults in SSI
technology were the result of packaging or bonding problems, but the same problems cause
only about 4% of the faults in LSI technology. The decrease in packaging and bonding
problems indicates an improvement in the quality of the packaging and bonding techniques
and perhaps an increase in the faults that are occurring on the IC itself.

Finally, note in Table 1 the significant increase in the percentage of faults associated
with the actual semiconductor material of the IC. Suppose we consider metalization,
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diffusion, foreign material and oxide problems as internal faults associated with the
semiconductor material itself. Also, suppose we consider packaging, bonding, mounting, and
misapplication as faults resulting from external factors. Table 1 shows that, for SSI
technology, internal factors account for approximately 39% of all faults, whereas external
factors account for approximately 54%. However, in LSI technology, the internal factors
account for over 75% of the faults, whereas the external factors account for approximately
119% of the faults. Consequently, we have seen a significant change in the primary sources
of faults as we have gone from SSI to LSI technology

Table 2 shows the fault distribution for LSI MOS devices [9). Although the failure
modes are categorized a little differently in Table 2. it is still easy to see that the
dominant cause of faults is due to the internal factors rather than the external factors. In
fact, oxide problems account for approximately 33% of all faults in MOS LSI devices.
Faults due to the package, bonding, and mounting account for only 10% of the total faults
in MOS devices.

(Table 2) Fault distribution percentages for LSI MOS ICs

Failure mode Percentage of faults
LSI MOS technology(25)
Oxide 33
Electrical overstress 15
Electrical 13
Metallization and particles 3
Package and wire 5
Bond and chip mount 5
Photolithographic 5
Other 21

As a results, the data for ICs indicates that more and more faults are resuiting from
factors unrelated to the packaging, mounting, bonding, or wiring of the IC. Several
important points result from knowledge of the change in the fault distribution. First, in the
days of SSI and MSI, it did not make sense to incorporate redundancy into the ICs
because the most common way for the device to fail was in the bonding or the packaging.

Consequently, internal redundancy would have a very limited impact (if any) on the
overall reliability of the device or the system. In addition, the SSI technology did not
provide the capability to include any redundant devices on the chip, primarily because of
space limitations. In LSI and subsequently VLSI, the packaging, bonding, and wiring are
becoming less of a factor, so it is possible to improve the reliability of an IC by
incorporating redundancy into the IC itself. Also, the use of LSI and VLSI technology
provides the capability to incorporate redundant circuitry in many applications.

4. OPPORTUNITIES AND PROBLEMS PRESENTED BY VLSI

In general, VLSI provides one simple capability : the ability to put more circuitry in a
smaller, more reliable, and, in many cases, less expensive package. For the designer of
fault-tolerant circuits and systems, the ability to have more circuitry implies that many of
the approaches that were previously not cost effective can now be used. For example,
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duplicated processors can now be placed on a single chip, whereas previously they required
multiple boards or even multiple cabinets. Likewise, triple modular redundancy, quad
redundancy, or even higher levels of redundancy can now be practical because of the size,
power, and cost savings attributable to VLSI technology.

The basic problem associated with VLSI is that the failure modes are now different. We
have already seen, for example, that as the level of integration has increased from SSI to
LSI, the common faults have moved from the pins and the package to the semiconductor
material. In addition, the increased complexity of the design has increased the probability of
design mistakes. Finally, the lower operating voltages of integrated circuits (many VLSI
devices use less than 5.0 wvolts) has decreased the noise margin of the devices and
increased the frequency of transient faults.

In this paper, we consider common-mode failures, design mistakes, and the increasing
occurrence of transient faults in VLSI circuits.

In general, a common-mode failure occurs when two or more identical modules are
affected by faults in exactly the same way at exactly the same time [12]. The problems
with such failures are numerous. For example, if two modules in a triple modular
redundancy system experience a common-mode failure, the two faulty modules could force
the output of the majority voter to become erroneous, even though a majority of the
modules (the two faulty ones) would agree. Similarly, a common-mode failure in a
duplication with comparison scheme would go undetected because the duplicated modules
would produce identical, erroneous results.

A VLSI design environment increases the probability of common-mode failures for
several reasons. First, VLSI devices are extremely complex ; therefore, the possibility of
design mistakes is increased significantly. Many modern ICs contain hundreds of thousands
of logic gates and often require the efforts of tens of designers to complete. The
expectation that the design is never going to contain latent design mistakes is often
unrealistic.

Second, identical modules can be located very close to one another on a single chip or
wafer. Consequently, stuck-type faults can easily affect both modules. For example, it is
very reasonable that two lines, one from each of two identical modules, could become
physically stuck at the same logical value : the result could be a common-mode failure.

Finally, the small feature sizes and resulting low operating voltages of VLSI devices are
increasing the likelihood that external disturbances will impact the operation of the device.
For example, an IC can be subjected to radiation or lightning that equally affects all
identical modules contained on the IC.

In general, there are four primary causes faults : (1) implementation (2) design mistakes
(3) external disturbances (4) random component defects. The fault tolerance approaches
considered thus far have ignored the category of design mistakes and have assumed that
such causes of faults are handled via fault avoidance techniques. When designs are
relatively simple, fault avoidance is easy to accomplish and can be extremely effective in
preventing design mistakes. However, with VLSI technology, designs are no longer simple.
Single ICs can have hundreds of thousands of gates, and there can be hundreds of ICs
within a given system. Clearly, the likelihood of design mistakes is increased when
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designing in a VLSI environment.

The problem of design mistakes in VLSI is similar, in many respects, to the problem of
latent bugs in software. Because of the large number of paths through many software
routines, it is not practical, from cost and time viewpoints, to exhaustively verify the
correctness of each possible path. Yet, the failure to exhaustively verify the correctness of
the routines creates the possibility that design mistakes go undetected until certain
operating conditions occur in the field, at which point it may be too late to correctly
handle the problem.

In the design of VLSI - based systems, the design tools (both hardware and software)
we use are often comparable in complexity to the system being designed. Consequently, we
not only have to worry about design mistakes occurring because of the limitations of the
human designers, but we must also be concerned with design mistakes that are a result of
problems in the design tools.

5. REDUNDANCY TECHNIQUES IN A VLSI DESIGN ENVIRONMENT

We will consider the following four primary categories dealing with the use of
redundancy in a VLSI environment : (1) duplication with complementary logic (2)
self-checking circuits (3) reconfigurable arrays (4) yield enhancement.

The use of complementary logic is a technique developed to overcome the problem of
common-mode failures.

Complementary logic has been applied in a number of different situations and has proven
to be very effective [10]. Self-checking circuits were developed initially to solve the "Who
checks the checker? ” problem. For example, in duplication with comparison, the
comparator is a weak link whose failure can result in the system either erroneously
indicating that a fault has occurred or ignoring the occurrence of a legitimate fault.
Reconfigurable arrays are becoming more popular as the ability to put large numbers of
processors on a single chip or wafer continues to increase. Redundancy is often added to
processing arrays to achieve real-time fault tolerance or to improve the probability of
initially obtaining an operational array, Finally, redundancy has been used in many cases to
improve the yield of VLSI devices by placing spare elements on the IC ; memories are
excellent examples of where such techniques have been employed.

(1) Duplication with complementary logic

The problems with duplication with comparison are : (1) the comparator is subject to
failure, and (2) the approach relies on the assumption that only one of the duplicated
modules will fail at a given time. As we have already seen, the possibility of
common-mode failure implies that we cannot safely assume that only one of the two
modules will fail. Consequently, we need to modify the design of the duplication with
comparison scheme to ensure that the effect of common-mode failures is minimized.
Several approaches can be used to help alleviate the problem of common-mode failure in
duplication. One technique focuses on minimizing the possibility of identical design mistakes
appearing in both modules by requiring that two separate design teams independently
develop the two modules{1]. The hope is that any design mistakes that occur will not be
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identical because the designers have been working independently. The problem with such
an approach is that the expense is often intolerable. The company must provide twice as
many designers and design resources. Also, the procedure does not address other causes of
common-mode failures such as those occurring during fabrication, packaging, or as a result
of external disturbances during normal operation. A second approach relies completely on
fault avoidance techniques. Designs are checked and double checked, and the production
process is closely monitored to attempt to ensure that the potential causes of
common-mode failures are eliminated. The difficulty here is that fault avoidance techniques
are seldom 100% effective, and once again there is no consideration for problems that arise
during the normal operation of the circuit or system.

(2) Self-checking logic

The concept of self-checking logic has increased in popularity because of the traditional
“checking the checker” problem. In many designs that use coding schemes or duplication
with comparison, it is necessary to compare the outputs of two modules or to verify that
the output is a valid code word. The basic problem with such techniques, as we have
seen, is the reliance of the approaches on the correct operation of comparators or code
checkers. If the code checker fails, for example, the system can indicate that an error
exists when in fact one does not, or the system can fail to detect a legitimate error that
occurs. In many applications either condition is unacceptable. One possible solution is to
design comparators and code checkers that are capable of detecting their own faults.
Consequently, the concept of self-checking logic has been developed.

In general, a circuit is said to be self-checking if it has the ability to automatically
detect the existence of a fault without the need for any externally applied stimulus [6]. In
other words, a self-checking circuit determines if it contains a fault during the normal
course of its operations. Self-checking logic is typically designed using coding techniques
similar to those discussed under information redundancy. The basic idea is to design a
circuit that, when fault free and presented a valid input code word, will produce the correct
output code word. If a fault exists, however, the circuit should produce an invalid output
code word so that the existence of the fault can be detected. To formalize the concept of
self-checking logic, we will define fault secure, self-testing, and totally self-checking. In
each definition, note that we are considering circuits designed to accept code words on
their input lines and produce code words on their output lines. A circuit is said to be fault
secure if any single fault within the circuit results in that circuit either producing the
correct code word or producing a noncode word, for any valid input code word[6]. In other
words, a circuit is fault secure if the fault either has no effect on the output or the output
is affected such that it becomes an invalid code word. A circuit would not be fault secure,
for example, if a fault resulted in the output becoming incorrect but still a valid code word.
A circuit is said to be self-testing if there exists at least one valid input code word that
will produce an invalid output code word when a single fault is present in the circuit[6]. In
other words, a circuit is self-testing if each single fault is detectable since a fault that
resulted in valid output code words for each possible input code word would be
undetectable.

Finally, a circuit is said to be totally self-checking if it is both fault secure and
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self-testing[6]. The fault secure property guarantees that the circuit will either produce the
correct code word output or an invalid code word output when any single fault occurs.
The self-testing property guarantees that there is at least one input code word that will
produce an invalid code word output from the circuit when a fault is present. In summary,
a circuit is totally self-checking if all single faults are detectable by at least one valid code
word input, and when a given input combination does not detect the fault, the output is
the correct code word output.

(3) Reconfigurable array structures

Perhaps one of the most promising areas of research in the fault-tolerant computing field
is the design and analysis of array structures for highly parallel and high-speed
processing. The goal of a parallel processing system is to exploit the fact that the
individual operations required in a given calculation do not necessarily have to be
performed sequentially. As a simplistic example, suppose that a system must sample eight
temperatures, convert each temperature to degrees Celsius, and display each temperature on
one of eight separate display units. One design approach for this simple problem would be
sequential in nature and would use a single processor that samples the temperatures in
sequence, performs the conversion of each temperature in sequence, and provides the
results to the appropriate display unit, again in sequence. If, however, you wanted to
sample the temperatures as often as possible, you might consider a structure whereby
eight processors are used, and each temperature is sampled, processed, and displayed in
parallel. Theoretically, the parallel approach would be capable of sampling each temperature
eight times more frequently than the sequential technique. The advent of VLSI technology
allows efficient and effective implementations of array structure for parallel computations. A
single chip, for example, might contain hundreds or thousands of processing elements
connected in a near-neighbor structure. Also, wafer-scale integration(WSI) might allow
hundreds or thousands of chips to be interconnected{4]. The potential for such designs
seems almost unlimited. Two fundamental problems, however, must be solved via fault
tolerance techniques. First, a wafer or chip manufactured with thousands of processing
elements will likely contain failed elements as soon as it comes off the production line. If
the design depends on all the elements being operational to be useful, you may never
obtain a useful device. So, the design must be performed such that the faulty elements
within the array can be bypassed and the fault-free elements interconnected to achieve a
functional array. Second, many applications will require that the array be capable of
handling elements failures that occur during the normal operation of the array. In some
applications, the array will be allowed to shut down to perform a reconfiguration, whereas
in other cases the array must continue its normal processing during the reconfiguration
proces. Three specific types of reconfiguration can be identified: (1) fabrication-time
reconfiguration that is performed immediately after manufacturing to produce an operational
processing array, (2) compile-time reconfiguration that is performed before each use of the
array, but not while the array is performing its normal operations, and (3) real-time
reconfiguration that is performed while the array is in operation and continues to provide
uninterrupted performance of its normal operations[5]. The most difficult reconfiguration to
perform is real-time reconfiguration. and the easiest may very well be fabrication-time
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reconfiguration.

(4) Redundancy to enhance yield of VLSI circuits

An important application of redundancy techniques in a VLSI design environment is to
improve the yield of integrated circuits. For our purposes, yield is defined as the number
of fabricated devices that work correctly divided by the total number of fabricated devices
[2]. For example, if a company fabricates 50,000 processor ICs and finds that 5000 of those
processors perform their functions correctly, the yield is 5,000 / 50,000, or 0.1. Expressed as
a percentage, the yield in this example is 10%.

In many VLSI applications, it is not unusual to experience yields on the order of 10%, or
perhaps even less. Consequently, the cost of manufacturing a circuit can become prohibitive
since ten ICs must be produced to obtain one that works. A number of investigators have
examined approaches that attempt to use redundant elements to replace failed ones so that
a faulty circuit can be repaired and made usable [7]. For example, it is quite common in
the semiconductor memory industry to include spare rows or columns of storage elements
such that a faulty row or column can be replaced using the fabrication-time reconfiguration
techniques described in the previous section for array-type structures. If used solely for
yield improvement, the reconfiguration is performed immediately after fabrication and is
irreversible. The purpose of this parts is to examine the improvement that can be obtained
in circuit vield by using redundancy. The specific redundancy techniques that may be used
for yield improvement include many of the approaches already considered in the previous
parts. For example, the most common application of yield improvement techniques is
memory ICs, and the most common redundancy technique is the addition of redundant
rows or columns that can be used to replace faulty rows or columns.

Several yield models have been developed in the past, and the majority are based on a
similar set of assumptions[2][11]. First, all failures on the IC are assumed to be the result
of what are called spot defects. Spot defects are localized to a given area within an IC and
are assumed to affect no more than one module within that IC. The specific size of the
module is not important here; the important point is that it is assumed that the defect is
not large enough to span more than one module. However, a module may have more than
one spot defect. If we assume, for example, that sport defects affect no more than one
module, we can use duplicate modules to provide redundancy, and a single defect cannot
render both modules faulty. Spot defects are in contrast to area defects, which affect
complete sections of a chip or wafer. Specifically, an area defect might result in the failure
of several modules within the same chip or several chips on the same wafer.

The second major assumption in yield modeling is that any single spot defect will result
in the chip being inoperative unless some type of redundancy is included. In other words,
all defects are considered to be fatal defects in nonredundant chips. In practice, a defect
might result in performance degradations that do not render the chip completely useless.
The yield models, however, assume that any single defect in a nonredundant chip results
in the chip being completely inoperative.

The final major assumption in yield modeling is that spot defects are randomly
distributed, in a physical sense, throughout a chip and a wafer. In other words, the number
of defects contained in any one area of a device is a random variable.
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6. CONCLUSIONS

This paper has presented the technology methods to the extremely vital topic of
designing fault-tolerant systems in a VLSI environment, using the advantages of VLSI and
accounting for its disadvantages.
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