Biosurfactant를 이용한 유화

Emulsion using Biosurfactant as Emulsifier

  • 홍세흠 (숭실대학교 환경·화학공학과) ;
  • 한창규 (라미화장품 피부과학연구소) ;
  • 조춘구 (숭실대학교 환경·화학공학과)
  • 발행 : 1999.03.01

초록

천연계면활성제인 lysolecithin과 오일성분인 squalane(SQ.), liquid paraffin(LP), octylpalminate(OP), octylstearate(OS), alkylbenzoate(AB), isostearylbenzoate (ISB)를 사용하여 제조된 에멀젼의 입자의 크기, 형상을 광산란 장치를 사용하여 다음과 같은 결과를 얻었다. 동적광산란실험을 통하여 에멀젼입자는 크기가 150nm~250nm로서 subemulsion 임을 확인하였고, 오일상의 농도가 0.25wt%에서 입자의 크기가 감소하다가 증가하는 오일의 임계농도가 있음을 알 수 있었다. 그리고 SQ에서 ISB의 순으로 오일의 극성이 증가할수록 입자의 크기가 감소함을 알 수 있었다. 정적광산란을 통하여 산란강도의 각도의존성으로부터 관성회전반경(R$_{g}$)를 구할 수 있었고 R$_{g}$/R$_{h}$로부터 극성류인 ISB, AB의 입자형태는 구형, 반극성인 LP, SQ는 타원형 그리고 비극성류인 LP, SQ는 막대형에 가까운 형태임을 알 수 있었다. 제조된 에멀젼의 점도는 구형입자에 비하여 막대형 입자의 점도가 높음을 알 수 있었다.다.다.

The o/w emulsions were prepared by lysolecithin as a biosurfactantsto to emulsify oils with squalane(SQ), liquid paraffin(LP), octylpalmitate(OP), octylstearate(OS), alkyl benzoate(AB), isostearyl benzoate(ISB). The droplets size and shape of o/w emulsions were investigated by laser light scattering, With dynamic light scattering hydrodynamic radius(Rh) of emulsion droplets was varied from 150m to 250m and critical concentration of oil In which the hydrodynamic radius(Rh) of emulsion droplets decreased and increased was found in the point of 0.5wt% oil concentration, and it was found increasing the polarity of oil deccreased the droplets, the droplets size of SQ(polar oil) were lower than SQ(nonpolar oil) With static light scattering radius of gyration(R$_{g}$) of emulusion droplets was to be calculated. From measurements of the ratio of R$_{g}$R$_{h}$ it was found that the shape of droplet of ISB, AB(polar oils) were sphere, for OP, OS(apolar oil) were oblate, for LP, SQ(nonpolar oil) were rod. The viscosity of emulsion in the form of rod was higher than that of emulsion in the form of sphere.e.e.

키워드

참고문헌

  1. Int. J. of Pham. v.116 Saint Ruth, H.;Attwood, D.;Ktistis, G.;Talyor, C.J.
  2. Langmuir v.11 Kahlweit, M.;Busse, G.;Faulhaber, B.F.
  3. Trans. Faraday Soc. v.51 Williams, R.J.;Phillips, J.N.
  4. N. KKO. Chem. Colloid 化學の進步 と實際 金品昌志
  5. J. Colloid Interface Sci. v.3 Schulman, J.H.;Riley, D.P.
  6. Kolloid Polymer v.169 Stockenius, W.;Schulman, J.H.;Prince, L.M.
  7. J. Chem. Phys. v.74 Biais, J.;Clin, B.;Lalanne, P.;Lemanceau, B.
  8. J. Colloid Interface Sci. v.70 Bellocq, A.M.;Biais, J.
  9. J. Phys. Chem. v.87 Brunetti, S.;Roux, D.;Bellocq, A.M.
  10. J. Colloid Interface Sci. v.73 Cazabat, A.M.;Langevin, D.;Pouchelon, A.
  11. J. Colloid Interface Sci. v.73 Hermansky, C.;Mckay, R.A.
  12. J. of Coll. & Sci. v.184 Kaiser, Stephan;Hoffmann, Heinz
  13. Microemulsions and Related System-formulation solvency and physical properties Schick, Martin J.;Fowkes, Frederick M.(eds.)
  14. Advances in Food Colloid Dickinson, E.;Mcclement, D.J.
  15. Chem. Tech. Biotech. v.48 Aveyard, R.;Binks, B.P.;Clark, S.;Fletcher, P.D.I.
  16. J. Coll. Int. Sci. v.177 Sohn, Daewon;Russo, Paul S.;Davila, Alfonso;Poche, Drew S.
  17. J. Coll. Int. Sci. v.178 Siver, James H.;Karayianni, Eleni;Cooper, Stuart L.
  18. Langmuir v.11 Thuresson, Krister;Nystrom, Bo;Wang, Geng;Lindman, Bjorn
  19. Macromolecules v.27 Bodycomb, Jeffery;Hara, Masanori
  20. The Scattering of Light and Other Electromagnetic Radiation Keker, M.
  21. J. Bilo. Chem. v.260 no.14 Slayter, Henry;Loscalzo, Joseph;Stedt, Paula Bodken;Handin, Robert J.
  22. J. Phy. Chem. v.82 Young, Charles Y.;Missel, Paul J.;Maser, Norman, A.;Benedek, George B.
  23. Physical Biochemistry Van Holde, K.E.
  24. Biopolymers v.25 Shogren, R.L.;Jamieson, A.M.;Blackwell, J.;Jentoft, N.
  25. Biochemistry v.29 Murphy, Regina M.;Chamberlin, Richard A.;Schurtenberg, Peter;Cotton, Clark K.;Yarmush, Martin L.
  26. Biopolymers v.31 Schurtenberger, P.;Augusteyn, P.C.
  27. Ber. Bunsengers. Phys. Chem. v.100 no.6 Burchard, Walther;Frank, Markus;Michel, Eduard