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1. Introduction

Much of industrial production is based upon an assembly line, along which components
are assembled into the finished product. In mixed model assembly lines, several models of
same general products are assembled sequentially on a common line. The jobs arrived at
each workstation can perform his assigned tasks on the product along paced conveyor.

Most of the proposed approaches for mixed model assembly line sequencing assume that the
number of distinct products is small and that the mix of products is relatively stable. Various
versions of the mixed model assembly line problem exist. These fall two broad categories; (1) line
balancing aspect to spread out a particular model and models as smoothly as possible[3], [5], [8], (2)
model sequencing aspect to allow optimumn utilization of the assembly line operators’ and/or minimum
variation of the actual production from the desired production{1], [2], [4], [7].

In the model sequencing problem, Thomopolous first proposed a heuristic approach including a
weighted penalty term comprising work congestion, idle time, and ufility tasks. Dar-Ei and
Corther suggested a heuristic which attempted to generate a sequence that mimmized the
overall length of the assembly line or throughput time[4], [8]. Various heuristics were suggested
to determine good sequencing to optimize their proposed objective.
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Recently, Bard et al. (1992) demonstrated an analytic framework for optimal sequences to
minimize two objectives, the assembly line length and throughput time, respective. In
particular, they showed that for a multitude of problems, the minimum line length and
minimum throughput time were always within 5% of each other parameters were held
constant(1].

The purpose of this research is to determine the new sequencing of models that
minimizes line length and throughput time and adopt two-phase method that addresses
both objectives, sequentially. In the first phase, the objective function of the line length is
minimized, and this optimal value then hooks up with the second phase’s constraint. In the
second phase, the optimal sequence of model can be determined while throughput time is
minimized at a given line length.

This research developed four different Mixed Integer Programming LP models, based on
the Bard et al.’s models(1992), that address combinations of status of work stations and
operators’ schedule as design parameters.

In order to demonstrate the effectiveness of the proposed algorithm, two-phase
method(TPM), the same data employed by Bard et al. was used, and also various size of
problem was performed.

2. Description of problem and model parameters

Mixed-model assembly lines are concerned with the progressive assembly on a simple
line for several models of particular product type, e. g. home appliances, automobile, etc.
Effectiveness of these lines depends on the optimal design of the line(line balancing,
number of work stations, cycle time, length and speed of the line, etc.) and optimal
scheduling of the line(sequencing, leveling part usages, etc.). In the ideal case, any product
within a family can be assembled in any order, and that only minimal changes are required
to redesign and rebalance the line when a new order arrives.

Table 1 shows the general parameters to consider in sequencing problem[1]. Assembly
line consists of J work stations with a operator respectively, and links to conveyor as a
material handling system moving at a constant speed V.. A unit arrives at work station
with predetermined interval called launch interval.

Table 1. Characteristics of sequencing problem.

Parameters Characterization

Launch discipline Fixed variable(single or multi-valued)

Station restriction Open, close(any combination)

Operator Schedule Early start, late start

Design objective minimize line length, minimize throughput time

Launch interval can be defined as equi-spaced or various spaced on the line, regardless
of the model. The operators can perform his assigned tasks on the product riding on the
downstream (to direction of next work station) conveyor during corresponding processing
time tjm, that is model type m at work station j, They return upstream to the next unit at
constant speed after completion.
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Work stations may be defined as one of these : Closed station has boundaries which
cannot be crossed by operators (e. g. spray paint booth, heat chambers, dip tank, etc.) In
contrast, open station has no boundaries so that can be clossed. Operators, however, must
not be permitted to interfere with each other, or to service same unit simultaneously, in
any type of workstation.

Each operator of work stations can perform his job according to late start or early start.
Early start implies that operators perform their job as soon as job arrives at work station.
Idle time may be occurred in early start while no idle time is permitted in late start. It is
always possible to set up the line and schedule the operators so that each works
continuously. This is achieved with a late start schedule which indirectly assures that a
sufficient amount of work-in—process inventory is available on the conveyer to avoid
starvation. The result is likely to be an increase in the size of the facility. The alternative
is to schedule the operators as early as possible with the realization that some loss in
productive time is inevitable.

We have two objectives : to minimize line length that is important factor of facility
design, and to minimize throughput time that is the typical job shop objective. A common
definition of throughput time in flowshop problem is the time between when a job is
released to the works or machines and when it is completed and ready for delivery. It is
composed of processing time, setup time, moving (material handling) time, plus waiting
(idle) time.

In mixed model assembly line problem, it can be defined as the time between when first
unit of the cycle is released to the first worker of work station 1 and when the last unit
of the cycle is completed by the last worker.

It is important to recognize that a tradeoff exists between these two objectives because
idle time is one of the components of throughput time. Two-phase method is introduced to
solve both objectives consecutively; phase I optimizes line length, then phase II determines
the sequencing of models to minimize throughput time given that line length. To do this,
we let optimized line length of the first phase be constraint of second phase.

3. Formulation of models

We develope four different models that address combinations of status of work stations
and operators schedule. To formulate, We are given a set of M product models to be
assembled on a common line consisting of J stations. Each model requires a set of tasks
to be completed. Based on the line design the operator at each station j performs a subset
of the tasks on each unit of the product. The product units are fixed to a conveyor belt
moving at a constant speed v. An operator takes negligible time to move between

products. Each model involves the following notation.

3.1 Notation

3.1.1 Indices
I position of a unit the sequence ; i = 1, ..., I
j work station ; j =1, .., ]

m model type ; m =1, .. , M
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3.1.2 Input data
v. velocity of conveyor
d, demand for model type m

t;n time to assemble model type m at work station j

I  number of units to be sequenced ; I= »gnd"‘

J number of work stations
M number of different model types

3.1.3 Computed parameters
T total work content ; T = 12_,1

\ m=1ti"’
w launch interval

II* optimal solution(minimum line length) of phase I objective function.

3.1.4 Decision variables
Xin binary decision variable equal to 1 if model type m is in the ith
position ; 0 otherwise.
Z; starting position of operator at work station j just before beginning the assembly
of ith unit the sequence
S; accumulated starting position of operator at open work station j for the ith unit.
; line length of work station j
Q;; idle time for the ith unit at work station j
; accumulated line length up to work station j

. launch interval time between ith unit and (i+1)th unit

3.2 Model 1 ~ Closed work stations, Early start

For the early start case, a fixed zero reference point is defined for each work station so
that the operators always start at or beyond this point and performs his job along the
downstreamn conveyor with the unit. By the definition of closed station, operators must
perform his job within their work stations. If the next unit hasn’t arrived at the work
station, operator waits at the origin starting point.

Mathematical and linear expressions that address closed stations and early start for all
operators of each work station are shown below.

Phase I
min [T = p- Y, (1.1)
subject to

ﬁ] Xim =1 for all i (1.2)
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2 Xim=dn for all m (1.3
Z; + vc("ﬁ;l Ximtim — W)SZ:'H.;' i=1, - ,I-1, for allj (1.4)
Zi+ ve ”g:l Ximtm < Y for all ¢, j (15)
Xn€1{0, 1}, Y;20, Z;20, Z,=0 for all i, j (1.6)
Phase 11
min {(g Y/’ + (2 ; mgl Xim t]m) /1)c + Z; Qi]} (17)
subject to
constraints (1.2), (1.3), (1.5), (1.6), and
Z; + vc(”g] Ximtim — W)SZ.'H,; i=1,,I-1, j=1,-, J—1 (1.8a)
Zy+ Uc('glximtim_ w+ Qi+1.])= Ziyy,y i=1,-,1-1 (1.8b)
Qin.720 i=1, -, I—1 (1.9
Y,= 1" (1.10)

j=

In the phase I, objective function (1.1) is to minimize the line length that sums the
length of each work station from 1 to J. The first constraint (1.2) assures that each
position in the sequence is occupied by exactly one model type. The second constraint (1.3)
makes all demand of each model for the cycle satisfied. In inequalities of (1.4) and (1.5),
the term  2nXimtim iS processing time of the ith unit, and when multiplied by velocity of

conveyor v, , gives the operator displacement. Inequality (1.5) indicates that length of

any work station j must be at least as great as the maximum displacement.
In phase II, objective function (1.7) sums the component of throughput time. The term

=1
z Y is overall length until first unit reaches the last work station ], and when divided

by V., gives the overall time. The second term implies that the last operator works
continuously for 2.,.d.t;, period. The last term of (1.7) is the sum of operator’s idle time

in last work station. Constraints of phase II are almost same as those of phase 1 except
constraint (1.4).

Inequality (1.4) is separated by (1.8a) and (1.8b) contributes to the calculation of the idle
time in the last work station.

Note that if w is treated as a varable, it is possible to obtain the optimal launch interval
Furthermore, if w is allowed to vary from one unit to the next, then by replacing w with
w; in (1.4), (1.8a), and (1.8b). This can be applied in general for the remaining models.
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3.3 Model 2 - Closed work stations, Late start

Phase 1
min IT = g Y,' 2.1
subject to
mgl Xiw=1 for all i (2.2)
2 Xim = dn for all m (2.3)
Z; + vc("g] Xim tim — w) =Zi+1,; i=1,-,I-1, for all (2.4)
Zi+ .2 Kintm < Y, for all i, j (25)
Xim € {0, 1}, Y, =20, Z; =0 for all ¢, (2.6)
Phase IT
min (g Y,‘ + v, ; mgl X,',,, t]m - Zu + Z,J) /Uc 2.7)
subject to
constraints (2.2), (2.3), (2.4), (25), (2.6), and
]g Y,=1 | v (2.8)

In designing the facility for the late start case, no operators’ idle time is allowed. As a

consequence, operators are continuously busy, and first unit of each work station can be
performed at any point out of zero reference point.
By equation (25) in phase I, operators are continuously busy. No idle time term,
therefore, is necessary in objective function of phase II. The intervals until the first unit
reaches to the first operator and the last operator should be excluded and included,
respectively, for the exact throughput time.

3.4 Model 3 - Open work stations, Early start

Phase 1
subject to
2} Xim=1 for all i (3.2)
2 Xim = dy, for all m (3.3)

Sy + v 2y Xontin = 0) < St i=1,~ I-1, for all j (3.4)
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Sii + ve m}ﬁl Ximtim < K; for all i, ; (35)
S+ vc"g] Ximtim = S j+1 for all i, j=1, - ,J—1 (36)
Xme{0, 1}, Y;20, S;20, S=0 for all 1, j (3.7
Phase I1
min {(Su+ v g ”g] Xin t) [ v+ g Q) (38)
subject to
constraints (3.2), (3.3), (3.5), (3.6), (3.7), and
Sy + vc(mi'.l Xim tim — w)SSHl.i i=1, - ,I-1, j=1,~, J-1  (3.9a)
Sy + uc(mf;1 Kimbom — w + Qi+1.]) =Sy i=1,,01-1 (3.9b)
Qi+1.720 i=1, -, I-1 (3.10)
K,=1" (3.11)

In open stations, operators may use adjacent work space to perform their job, but may
not interfere with neighbours. We now introduce the term K, that is an accumulated line
length up to the station j.

The constraint (3.6) indicates that the position of j+lst work station for the ith unit is
always greater than the position of jth work station for the ith unit. This inequality
contributes to the computation of accumulated work station length.

3.5 Model 4 - Open work stations, Late start
With the same manner of the case of closed work station and late start (model 2), no
idle time occurs and the operator is continuously busy. The model can be formulated as

follows.
Phase 1
min 1 =K, (4.1)
subject to
mg] Xm=1 for all i (4.2)
2. Xim = d,, for all m (4.3)
Sy + vc("gl Xim tim — w) = Sit.; i=1, - ,I—-1, for all § (4.4)
S,‘j + v, 'gl X,'m t,‘m < K,‘ for all i, ] (45)
Sy + ve wg] Ximtim < Si i+ for all i, j=1, - ,J—1 (46)

Xm€{0, 1}, Y;20, S;=20 for all i, j 4.7
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Phase I
min (su = Sut o ,é:l mf:.l Xim t]m) [ ve (4.8)
subject to
constraints (4.2), (4.3), (4.4), (45), (46), (4.7), and
K;=1" (49

4. Numerical examples
" In order to demonstrate the proposed algorithm, two-phase method(TPM), we used the
same data that was employed by Bard et al. All calculations were done by linear
programming package LINDO running on a personal computer, Pentium 75. Data for the
numerical examples are shown below.

Number of stations : J=4

Number of models : M=3

Demand of a cycle : d=(5,3,2)

Velocity of conveyor : v.=1 (unit time)

Position in sequence : 1=10

Assembly times for each model : t,,=(4,8,7), t3,=(6,9,4), t3,=(8,6,6), tum=(4,7,5)

Total work content : T=244

Launch interval : w=6

For the first time, we examined four proposed models with above data when the launch
discipline was held constant. Outcomes are listed in last four columns of Table 2 for the
optimal sequence. In Table 2, the results involving minimization of line length, and
throughput time by Bard et al. are also listed in first four columns and middle four
columns, respectively.

Figure 1 and 2 display the operator movement diagram associated with the solution
obtained for model 1 and model 3, respectively.

As we can see, the results of line length with TPM are exactly same optimal line length
by Bard et al. In particular, TPM determined optimal sequencing that resulted in better
throughput times in cases of closed stations (model 1, and model 2) when compared with
throughput times of Bard. et al.

As previously mentioned, a trade off exists between line length and throughput time.
According to Bard et al, line length is sometimes increased when throughput time is
optimized. We can confirm it to check the line length of closed, early case by Bard et al.
in Table 2. It may happen because objective oriented to throughput time can chase
optimization of throughput time at the sacrifice of line length.
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Table 2. Comparison of TPM's results with Bard et al.’s

Minimize line length Minimize throughput time TPM

Earl Late  Earl Late
. Early Late Early Late Early Late Barly Lae 8 Y &
Position losed closed open losed closed closed closed open open
n open
clo Pen open  closed  closed Open  OPEN \y el 1) (Model 2) (Model 3) (Model 4)

2 1 1 1 2 1 1 1 2 1 1 1

—

2 1 1 1 1 3 1 1 1 1 1 1 1

3 1 2 1 2 1 1 1 1 3 2 1 2

4 3 3 2 1 1 2 2 3 1 1 2 1

5 1 1 1 2 2 1 1 1 2 3 1 2

6 2 3 3 1 3 3 3 2 1 2 1 3

7 1 1 2 3 1 2 2 1 3 3 2 1

8 3 3 3 3 1 3 3 2 1 1 3 2

9 1 1 2 2 2 2 2 3 2 2 2 3

10 2 2 1 1 1 1 1 1 1 1 3 1
Length 42 50 34 41 43 52 4 4 42 49 34 41
Time 9% 93 8 & 95 93 87 &4 94 92 87 84

Table 3. Comparison of TPM with various w in case of model 1

Minimize line length | Minimize throughput time TPM
position |(w=6) (w=var) (w;=var)| (w=6) (w=var) (w;=var) |(w=6) (w=var) (w,;=var)
1 2 2 1 2 1 1 2 1 1
2 1 2 1 1 2 2 1 2 2
3 3 1 2 3 1 1 3 1 1
4 1 3 3 1 3 3 1 3 3
5 2 3 2 2 2 1 2 2 1
6 1 2 2 1 1 2 1 1 2
7 1 1 3 3 3 2 3 3 1
8 3 1 1 1 2 1 1 1 3
9 1 1 1 2 1 3 2 2 2
10 2 1 1 1 1 1 1 1 1
Line length | 49 32 32 | 4 34 33 12 32 32
Throughput | o5 113 97 | 94 92 91 94 92 91

For the second time, model 1 was performed with two situations that w was treated as
a variable to obtain optimal launch interval and that w; was treated as variable to obtain
optimal launch interval between ith and i+lst unit. Qutcomes are listed to compare with

Bard. et al. in Table 3.
We can see that proposed TPM performs better in throughput times while line lengths
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are equal to those of Bard et al.

In order to demonstrate the effectiveness of the proposed algorithm, two-phase
method(TPM), various size of problem was performed. The results showed that TPM
always performed better than single objective of line length and prevented lumpy
throughput time from optimal line lengthl7].

5. Conclusions

Bard et al. (1992) showed that for a multitude of problems, the minimum line length and
minimum throughput time were always within 5% of each other when other parameters
were held constant. In practical manner, however, we may be interested in a good
sequence to minimize the throughput time when line length is given.

This paper develops two-phase method that guarantees optimum/near optimum of
throughput time with optimum line length. In the first phase, the objective function of the
line length is minimized and this optimal values then hooks up with the second phase’s
constraint. In the second phase, the optimal sequencing of models can be determined while
throughput time is minimizing at given line length.

We developed four different models with combination of parameters of station restrictions
and operator schedule. Each model was formulated with relatively simple and direct term.
We examined each model using the numerical data by Bard et al.

In conclusion, proposed two-phase method determines a new sequencing to give a better
throughput time when optimal line length is held constant and launch interval is treated as
decision variable. Sequencing by TPM is better alternative than the sequencing that is
produced by running each objective, respectively, such as line length or throughput time. It
is demonstrated by various problems with different cycle size.

To apply these exact methods in the field, the heuristic methods will be remained as a
further research.
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