Soft polymeric materials near the transition from liquid to solid state

  • Winter, H.Henning (Department of Chemical Engineering and Department of Polymer Science and Engineering University of Massachusetts)
  • 발행 : 1999.12.01

초록

Soft polymeric materials have gained importance in recent years, namely in food, pharmaceuticals, photographic media, adhesives, vibration dampeners and superabsorbers (to name a few), but also as inter-mediates for selforganization of molecules or supramolecules into long range order. Many of these soft materials are close to their gel point, i.e. they are liquids just before reaching their gel point or they are solids which have barely passed the gel point. New rheological methods need to be developed for the understanding of these soft materials; the typical liquid properties (viscosity) and typical solid properties (modulus) are not applicable since they diverge at the gel point. This will be discussed in the following. Fortunately, chemical gelation experiments with model polymers has given insight into the behavior at the gel point (Winter and Mours, 1997). This knowledge of the critical gel provides us with a reference state when working with soft polymeric materials. Chemical gels will serve as model materials for the exploration of physical gels. A novel method for detecting the gel point has been proposed: the instant of liquid-to-solid transition(gel point) is marked by the crossover of the normalized dynamic moduli G'/cos($n_c$$\pi$/2) and G"/sin($n_c$$\pi$/2).>/2).

키워드

참고문헌

  1. Rheol. Acta v.29 Baumgartel, M.;A. Schausberger;H.H. Winter
  2. Polym Bull. v.13 Chambon, F.;H.H. Winter
  3. J. Chem. Phys. v.55 De Gennes, P.G.
  4. Polymer Gels and Networks v.5 De Rosa, M.E.;M. Mours;H.H. Winter
  5. Viscoelastic Properties of Polymers(3rd ed.) Ferry, J.D.
  6. J. Am. Chem. Soc. v.63 Flory, P.J.
  7. J. Phys. Chem. v.46 Flory, P.J.
  8. Macromolecules v.32 Gelfer, M.Y.;H.H. Winter
  9. J. Non-Newt. Fluid Mech. v.27 Holly, E.E.;S.K. Venkataraman;F. Chambon;H.H. Winter
  10. Macromolecules v.33 Horst, R.;H.H. Winter
  11. Nature v.225 Keller, A.;E. Pedemonte;F.M. Willmouth
  12. Macromolecules v.27 Izuka, A.;H.H. Winter;T. Hashimoto
  13. Constitutive Equations for Polymer Melts and Solutions Larson, R.G.
  14. Phys. Rev. Lett. v.61 Martin, J.E.;J.P. Wilcoxon
  15. Macromolecules v.29 Mours, M.;H.H. Winter
  16. Macromolecules v.31 Pogodina, N.V.;H.H. Winter
  17. J. Poly. Sci.: Polymer Physics v.37 Pogodina, N.V.;H.H. Winter;S. Srinivas
  18. Macromolecules Sakamoto, N.;T. Hashimoto
  19. Physique Lett. v.45 Schosseler, S.;L. Leibler
  20. Polymer v.38 Soenen, H.;H. Berghmans;H.H. Winter;N. Overbergh
  21. Introduction to Percolation Theory Stauffer, D.
  22. J. Chem. Phys. v.11 Stockmayer, W.H.
  23. Adv. Polym. Sci. v.130 te Nijenhuis, K.
  24. J. Appl. Polym. Sci. v.27 Tung, C.-Y.;P.J. Dynes
  25. Rheologica Acta v.29 Venkataraman, S.K.;H.H. Winter
  26. Progr Coll Polym Sci. v.26 Vilgis, T.;H.H. Winter
  27. J. Rheology v.30 Winter, H.H.;F. Chambon
  28. J. Rheology v.31 Winter, H.H.;F. Chambon
  29. Advances in Polymer Science v.134 Winter, H.H.;M. Mours