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Numerical Analysis of Ocean Wave by Multi-Grid Method
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Abstract

The ocean wave is hydrodynamically investigated to get more reliable solution. To
improve the computational accuracy, more fine grids are used with relatively less computer
storage on the free surface. One element of the free surface is discretized into more fine
grids because the free-surface waves are much affected by the grid size in the finite
difference scheme. Here the multi-grid method is applied to confirm the efficiency for the
5103 ship model by solving the Navier-Stokes equation for the turbulent flows. According to
the computational result, approximately 30% can be improved in the free surface generation.
Finally, the limiting streamlines show that the numerical result is similar to the experiment
by twin tuft.

1. Introduction

To overcome the deficiency of computer’s
hardware, the improvement of the efficiency has
been strongly demanded in the computational
procedure. Many numerical techniques have been
developed to improve the finite difference method,
but the method still faces a serious problem
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because it requires very long CPU time and a
huge memory storage for accurate simulation.
The method of IAF (implicit approximation
factorization), a kind of implicit scheme, the
method of local time step,
examples for more efficient computations. Some

etc. are the

comparative calculations by these methods

have been carried out. It seems that IAF is
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quite promising to speed up the calculation but
its formulation is a little complicated. Moreover,
the method brings forth some numerical
damping. For the numerical truncation error to
be small enough to have little effect on the
physical performance, the mesh size should be
strictly considered because it is very crucial for
the efficiency. For example, in the finite
difference calculations of viscous flow described
by the Navier-Stokes equation, the minimum
mesh size is usually so chosen that the
numerical dissipation, which comes from the
discretization of the convection terms, is much
less than the physical dissipation. The mesh
size must be extremely small for high
Reynolds—number flows to meet this demand.
However, such fine meshes are not always
necessary for all the equations and terms. For
example, the truncation errors of the Poisson
equation for the pressure of the non— convective
terms in Navier-Stokes equation do not have
much influence on the results as the convection
terms do. The hybrid type of the mesh may
make the computations more efficent. One
possibility is to employ different mesh systems
depending on the characteristics of the equations
or the terms. We call such a method “double
mesh method™ or "triple mesh methodm", written
in short as DMM or TMM hereafter. It was first
proposed for numerical simulations of 3-D
nonlinear free-surface flow problems by
boundary element method®. In order to reduce
the numerical viscosity as much as possible, a
very fine mesh system which contains about 60

gn'ds‘” in one wave length is used in the finite

difference calculation concemed with the
free-surface equations, while the governing
Laplace equation is solved on a relatively coarse
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mesh system which contains about 10 grids in
one wave length by the boundary element
method. The computed results by DMM or TMM
were of enough accuracy and both the computing
time and the size of the memory storage were
remarkably reduced.

In the present study, a multi-grid on the
free~surface is introduced in the finite difference
solver of the Navier-Stokes equation to improve
the calculation efficiency. As mentioned above,
the demands to the mesh size are not the same
for all the equations and the terms in the finite
difference method. So it is expected that some
improvement, similar to that achieved in the
simulation of free-surface problem by DMM or
TMM, may be made by introducing more fine
meshes in the conventional finite difference
method.

2. Governing Equations and
Computational Strategy

A single grid systemﬁ) is usually used in the
whole computation whose minimum size is
determined for the numerical diffusion to be less
than that by viscosity. The grid size for the
calculation of the free surface elevation must be
determined by a different scale, the minimum
wave length. In the simulation, two or three
mesh systems are usually used whose sizes are
different each other depending on the char-
acteristic of equations. The first one is for the
convective terms in the Navier-Stokes equation,
the second is for the Poisson equation, and the
third is for the free-surface equation. The third
grid system requires the finest mesh. In the
present calculation, the third one is numerically
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confirmed ; more fine grids are used to improve
the accuracy of free-surface calculation with
relatively less computer storage. One element of
the free-surface is discretized into (4xii,4xij),
(8xiidxjj), (12xii, 4xjj) fine grids because the
free~surface waves are much affected by the

grid size in the finite-difference scheme.

The positions, or Lagrangian coordinates, of
each nparticle (xX',y'pZp) are obtained by
numerical integration from some initial position

(x%y%2%) at time = 0 ;

= X%+ [ oup.dt
Vo = v% + [ vp-dt (1
=2+ | wp.dt

where 1, Vv, W, are the velocities in the Eulerian
mesh at the time dependent location of the
particle. In the present MAC-based codes, the
particle velocities are evaluated by two-variable
linear interpolation. Consistent with the forward
time integration of MAC method, (1) is evaluated
sequentially as (2).

1
Xim - Xl_n + lljn-At

n+l

il =y o+ v AL (2)

M=zt wtlAt

(2) is the Lagrangean expression of the
kinematic condition on the free-surface. The
condition can also be expressed in the Euler form

as follows;
atjot = - u.9g/ox - v.d8l/ay + w (3)

where { and t are the free-surface elevation and

the time respectively. Numerically (2) is equiv-
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alent to (3) if the 1st order upstream difference
scheme is used in (3).

The shape of the free-surface is not known a
priori; it is defined by the position of the marker
particles. We note that the boundary conditions
at the free-surface require zero tangential stress
and a normal stress which balances any
externally applied normal stress. The application
of these conditions requires a knowledge of not
only the location of the free-surface at each grid
but also its slope and curvature. In our cal-
culation, the z-coordinate of the free surface is
re-—arranged by the bivariate linear interpolation
in proportion to the newly calculated projected
area at each time step. At the hull surface, the
no-slip condition is used for the velocity, and the
Neumann condition for the pressure. The hull is

- fixed in the computational domain, while the

uniform flow is imposed on the upstream
boundary.

3. Application and Discussion

The S~103 model for high Reynolds-number
flows is studied to confirm the numerical
efficiency of the multi grid. S$-103 is an Inuid
model with the beam/length ratio of 0.09. In the
present case, calculations are made at R,=10° and
F,=0.28 with Baldwin Lomax turbulence model.
The result is that at the time T=3.0, when the
convergence is well assured. The grid size of
regular type is 74x29x30 and the multi-grid on
the free-surface is numerically tried. Fig. 1
shows the wave patterns obtained by the regular
grid. Fig. 2 uses the grid of (4xii,4xjj) on free
surface and gives us about 7% improvement in

the free-surface development, compared with that
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Fig. 1 Free-surface contour by regular grid(ii, jj) for S-103 case
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Fig. 2 Free-surface contour by multi-grid (4xill, 4xjj) for S-103 case
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Fig. 4 Free-surface contour by multi-grid (12xill, 4xjj) for S-103 case
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Fig. 5 Limiting streamlines at Fn=0.27 and 0.30(above:computed, below:experiment)

by regular grid. It is found that the size of grid
is very important in moving the marker particles
on free surface. Here the improvement means
that the wave height, ie. the distance between
the trough and the crest, could be numerically
calculated and quantitatively compared to each
other.

Fig. 3 uses that of (8xii,4xjj) on free- surface.
It shows the improvement of about 21% at
T=30. Fig. 4 uses that of (12xii4xjj) on
free-surface. Some more improvement is
obtained; 29% compared with that of regular grid
at T=3.0.

Fig. 5 shows the limiting streamlines. Here the
solid line means the streamline in the boundary

layer and the dotted line outside it. The
separated region of Fn=0.27 is significantly wider
than that of 0.30. The experiment by twin tuft
shows similar tendency; the separated region of
Fn=0.30 close to the free surface is partially due
to the free-surface sub-breaking.

4. Conclusion

The multi-grid method is applied to the finite
difference solution of the Navier-Stokes equation
to improve the efficiency. The method is to use

more than one mesh system on the free surface.
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Through comparative computations, the method
is found to be significantly effective for the
efficient free-surface calculation without much
increase of CPU time and the memory. Finally,
the limiting streamlines show that the numerical

result is similar to the experiment by tufts.
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