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A New Upper Bound of Convolution-type for
Median-Unbiased Estimators'

Beong-Soo So!

ABSTRACT

We derive a new upper bound of convolution type for the median-unbiased
estimators with respect to an arbitrary unimodal utility function. We also
obtain the necessary and sufficient condition for the attainability of the infor-
mation bound. Applications to general MLR (Monotone Likelihood Ratio)
model and censored survival data are discussed as examples.
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1. INTRODUCTION

Let i be a Lebesque measure on the Euclidean space R™ . Let P = {Pp;0 € ©}
be the family of distributions on R™ with the density function f(z;6) with respect
to u where z = (z1,--+ ,2,) € R"® and © € R is an open interval in R.

Let X = (X1, ---,Xn) be a random vector having a joint density function
f(z;6) and let g(@) be a real valued differentiable function of € ©.

Definition 1.1. An estimator 6(X) of g(8) is called median-unbiased if
mediang(§(X)) = g(8) forall 6 € O. (1.1)

For any estimator having continuous distribution , the condition (1.1) is equiva-
lent to the following conditions :

Pyld(X) < g(0)] = P[6(X) 2 g(6)] =1/2 forall 6§ €O.

or
Ey[sgn(6(X) —g(0))] =0 forall 8€0O. (1.2)
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where sgn(z) = +1,0, —1 depending on the sign of the value z.

Let §(X) be an arbitrary median-unbiased estimator of g(6) and let f5(y;0)
be the density function of the random variable Y = §(X) with respect to the
Lebesque measure in R.

In this framework several versions of the analogue of the Cramer-Rao lower
bound for median-unbiased estimators were proposed in the literature. As a first
step in this direction , Alamo (1964) introduced the quantity f5(g(6);8) as a new
measure of concentration of the median-unbiased estimator §(X) around the
estimand g(f) and obtained the following lower bound:

[2/5(9(6);0)]7" 2 19 (8)1/12(8)'/2 (13)
where I5(0) is the usual Fisher information which is defined by
I(6) = Ey[(9/00)log f (X;0)) .

Here we note that the quantity [2f5(g(6);6)]~! can be interpreted as a natural
measure of the dispersion of the estimator §(X) around the estimand g(6) cor-
responding to the concentration measure f5(g(6);6). See Sung et al. (1990)
for more information on the properties of the quantity [2f5(g(6);8)]™! as a new
measure of diffusivity of the estimator.

Recently, increasingly sharper lower bounds for the left hand side of the above
inequality (1.3) were proposed by several authors including Sung et al. (1990)

and So (1994). For example Sung et al. (1990) obtained the improved result :
[2f5(9(8);0)) " > ¢/ (6)I/11(6) (1.4)
where I1(0) is a simple Lj-analogue of the Fisher information
11(6) = Ey|(8/00)log f(X; 6)).

Finally , motivated by the generalized Neyman-Pearson Lemma, So (1994) ob-
tained a sharper lower bound.

[2/5(g(8);0)17" 2 19 (9)I/ 13 (8) (1.5)
where I7(0) is a centered Li-version of the Fisher information :
17(6) = Ey|(8/80)logf (X;6) - k7.

and

k* = mediang[(0/08)logf(X;0)).
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On the other hand, from a decision-theoretic view point, the quantity f5(y;8)
has a serious drawback as a measure of concentration because it is based on a very
special zero-one loss function and is overly sensitive to the value of the density
fs(y; 8) at a single point g(f) and ignores all other values.

In order to overcome this difficulty, we will consider a general class of unimodal
utility functions ~(6(X) — g(0)) in this paper. Then we exploit the representation
of the arbitrary unimodal density function as a scale mixture of uniform den-
sities and derive a new information bound of convolution-type for the expected
utility of the median-unbiased estimators. Essentially we will prove the following
inequality:

Eoh(6(X) — )] < (1/2)I(8,G) for all 8 € O, (1.6)

where h(-) is an arbitrary unimodal utility function with an unique mode at zero
and I(#,G) is a new kind of Fisher information which will be defined explicitly
in Section 2. Note that the left hand side of (1.6) can be represented formally as
the convolution [ h(y — g(0))fs(y;8)dy of the two densities h(-) and f5(y;8) .

For the special zero-one utility function A(-), our result (1.6) will be shown
to include the previous inequality (1.5) in the limit. We will also identify the
necessary and sufficient conditions for the attainability of the convolution bound
(1.6) which will be very useful in constructing optimal mean-unbiased estimators
in many practical problems.

Finally in Section 4. we show that these optimality conditions are satis-
fied in several examples including general family of density functions having
MLR(Monotone Likelihood Ratio) property and some models with censored sur-
vival data.

2. UPPER BOUNDS

In this section we construct a class of general information inequalities of
convolution-type for the median-unbiased estimators with respect to arbitrary
unimodal utility functions.

Let A be a real number such that both 8 and 6 + A belong to ©. By the
definition of median-unbiased estimator, we have

Eylsgn(5(X) — 9(6))] = 0. (2.1)

Egialsgn(d(X) —g(@+A))] =0 . (2:2)
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Subtracting (2.1) from (2.2) and rearranging suitable expressions, we obtain
[1(@36+ 2) = (a3 O)saml5(X) — (6 + Al
+ Ep{sgn[6(X) — g(6 + A)] - sgn[6(X) — g(0)]} = 0. (2.3)
Multiplying (2.2) by kA and subtracting it from (2.3), we get the identity :
[15a50+8) = £(ai6) = - A (a:0-+ Alagnls(X) ~ 900 + e
+ Ep{sgnld(X) — g(0 + A)] — sgnld(X) —g(@)]} =0.  (2.4)
We now summarizes above results in the following lemma.

Lemma 2.1. Let g(f) be a real valued function on ©. Let §(X) be a median-
unbiased estimator of g(0) having continuous distribution function Fs(-;6). Then
for an arbitrary constant k, we have the identity :

[F5(g(8 + A);0) — Fs5(g(6);0)]

= (1/2) [ |f(z;:0 + A) — f(z;0) — kAf(z;0 + A)[s1 - sadp (2.5)
where s, = sgn[f(z;0 + A) — f(z;0) — kAf(z;0 + A)] and
sz = sgn[6(X) — g(0 + A)].

Proof: This identity follows immediately from (2.4) . O

Now we are ready to obtain a general upper bound for the expected utility
function of the median-unbiased estimator §(X) with respect to an arbitrary
unimodal utility function.

Suppose g(8) = 6 without loss of generality and let A > 0. Then we can
obtain the following inequality directly from Lemma 2.1.

B9 < 3(X) < 6+4] < (1/2) / | (5;6+8) - f(:6)— kA (z;0+A) [ (2.6)

for an arbitrary constant k. Dividing (2.6) by A and taking infimum with respect
to k on the right hand side of (2.6). we obtain the bound :

BpI[0 < 6(X) -0 < AJ/A < (1/2)I(8,4)/A (2.7)
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where I(#, A) is an analogue of Fisher information defined by :

16,8) = infren [ 1(@i8+8) - [(z;6) - bAS(@:0+ A)lds. (29)

Now if we integrate both sides of (2.7) with respect to A for an arbitrary
distribution function G(A), A > 0, we get the following inequality :

EnEglha(6(X) —6)] < (1/2)EalI(6,4)/A] (2.9)

where ha(u) = I(0 < u < A)/A. By the Fubini’s Theorem, we can interchange
the order of integration in (2.9) and obtain the following inequality immediately:

Eolha(6(X) - )] < (1/2)1(6,6) (2.10)
where

he(u) = /0 " haW)dG(A) (2.11)

and

16,G) = /0 10, A)/A dG(A).

Here we note that the function hg(u) defined in (2.11) is a monotonically
decreasing density function of v > 0 and it has an unique maximum at u = 0.
Hence we can consider hg(u) as a kind of utility function which measures the
degree of concentration of the estimator §(X) around the true value 6.

For general A € R, we introduce the following notations. Let hg(u) be an
arbitrary unimodal density function in R with an unique mode at zero such that
for some distribution function G(-) in R with no atom at zero ;

ha(w) = { S ha(u)dG(A)  if u>0, (2.12)

J° ha(w)dG(A) if u<0.
where ha(u) = I{(0 < u < A)/A for A > 0 and ha(u) = —I(A <u < 0)/A for

A <O.
We also introduce the following definition of the information number :

16,6) = Ba [ 16,)/ 18] ] = | T 10,0001 dG(A),  (2.13)

—00
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where
16,8) = infyen [ 170530+ 8) = §(2:0) ~ KAS (w6 + Al

Now, if we apply the same arguments to the case A < 0 as in (2.10), we can
obtain an universal upper bound for the concentration measure of the median-
unbiased estimator for an arbitrary unimodal utility function. This result is
summarized in the following theorem.

Theorem 2.1. Let §(X) be a median-unbiased estimator of 8 having a contin-
uous distribution function. Then we have :

Eylhg(6(X) —0)] < (1/2)1(6,G). (2.14)

Remark 2.1. It is well known in the theory of unimodal function that every
unimodal density A(-) with an unique mode at zero can be represented by (2.13)
for some distribution G(-). See Feller(1968) for more details.

Remark 2.2. We note that the information quantity I(6, G) is always bounded
above by the following number ;

1(6,6) < / / £ (260 + A) — £(z;0)|/A] du dG(D) (2.15)

which is again bounded by a number given by ;

16,6) < / / /0 1 10F (210 + uA)/00] du dy dG(A). (2.16)

Remark 2.3. If we choose G(u) = I{fu > A], A > 0, then (2.14) reduces to
(2.7). Moreover if we let A — 0 in (2.7), the left hand side of the inequality
approaches the density height fs5(g(0);0) at g(6) = € and the right hand side
I(6,A)/A reduces to If() in (1.5). Thus our result generalizes previous bound
(1.5) for the density height.

Remark 2.4. In the usual large sample asymptotic framework, our result (2.14)
reduces to the well known bound of Phanzagl (1970) for the asymptotic risks of
the median-unbiased estimators.

Now as a non-trivial application of the above results, we list some special case
of Theorem 2.1 in the following corollary.
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Corollary 2.1. Under the same assumption as in Theorem 2.1, we have the
inequality :

B0 - 017 - 1 < (2 [ T[I(&A)/A]pmr"dzs, 2.17)

for any 0 < p < 1 where z+ = maz(z,0).

Proof: Let dG(z) = p/|z|Pdz, -1 < = < 1 and let hg(z) = [1/|z[P — 1]*. Then
it follows immediately from (2.14). O

Remark 2.5. Note that the utility function hg(z) = [1/|z]P — 1] is an un-
bounded function which becomes infinity as = tends to 0. But the right hand
side of (2.17) is usually finite as is noted in the above remark.

3. OPTIMALITY CONDITION

In this section we identify the necessary and sufficient conditions for the at-
tainability of the information bounds derived in Section 2 which will be useful in
obtaining optimal median-unbiased estimators in many problems.

We can easily obtain the following results on the attainability of the informa-
tion bounds from Lemma 2.1.

Theorem 3.1. We have the equality in (2.14) if and only if for all A in the
support of the distribution G(u), we have the identity

sgn{[f(z;0+A) = f(z;0)]/A - kf(z;0+ A)] = sgn[6(X) — 6 — A] - sgn(A) a.e. p

(3.1)
for some k.
Proof: (3.1) follows immediately from Lemma, 2.1 if we note that
|s1s2] <1 and |s1s2] = 1 holds if and only if s; = 55 a.e. p. O

Remark 3.6. By the median unbiasedness of §(X), we note that the optimality
condition (3.1) implies

k = mediangy a{[f(z;0 + &) — £(2;0)]/Af(z:6 + A)}. (3.2)

Now we introduce the definition of optimal median-unbiased estimator §(X)
in terms of the general information bound (2.14).
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Definition 3.1. A median-unbiased estimator 6(X) of 6 is called G-optimal (or
hg-optimal) if we have ;

Eolhg(8(X) - 0)] = (1/2)I(8,G) for all 8 € O. (3.3)

4. EXAMPLES

In this section we give several examples where the optimal median-unbiased
estimators can be found by the optimality conditions derived in Section 3.

Example 4.1. (MLR family) Let {f(z;8),0 € ©} be a MLR family with
respect to 7'(X) with a continuous distribution function.

Now we show that T(X) is an optimal median-unbiased estimator of g(6)
where g(6) = mediang[T(X)]. Then by the well known monotonicity property of
g(#) in the MLR family, we can conclude immediately that §(X) = ¢~ !(T(X)) is
an optimal median-unbiased estimator of 6.

Note that the MLR property implies that for all A > 0,

f(z;0 + A)/f(x;6) is an increasing function h(T'(X); 80,6 + A) of T(X).

This in turn implies that for all A > 0,

sgn| f(z;60 + A)/f(z;0) ~ k | = sgn[T(X) — g(6 + A)]
=sgn[6(X) — 60— A ae. p (4.1)

where we choose k = h(g(6 + A); 0,6 + A). This together with a similar identity
for A < 0 finishes the proof of the optimality of T'(X) and 4(X) with respect
to an arbitrary unimodal utility function hg(:) . As a specific example of MLR
family, we consider the following example.

Example 4.2. Let X = (X1, -, Xn) be a random sample from the exponential
distribution f(z;0) = 8~ lexp(—z/0) , = > 0, 6 > 0. Then the joint distribution
of X = (Xy,---,Xn) is an exponential family and has an MLR property in
T(X) = 5 -, Xi. Thus T(X) is an optimal median-unbiased estimator of C,,0
where C;, denotes the median of the Gamma distribution with shape parameter
n and scale parameter 1.

Therefore §(X) = .7 ; X;/Cnr is an optimal median-unbiased estimator of 9.
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Example 4.3. (Censored Data) Let X = (Xi,---, X,) be a random sample
from the distribution of the form f(z;0) = f(z — 8) , 2,6 € R. Let the density
f(z — @) of X; have a strongly unimodal property . Then we have I(z) = logf(z)
is a concave function of z. Let Ga(u) = I{a o0)(u), ha(u) = Ijg,a)(u)/A. Suppose
we only observe first m-order statistics (X(l), =+, X(m)), m < n which represent
censored data. Then the joint p.d.f. of the censored data (X, - s X(my) 18
given by ;

F(2.0) =[] flz) = 0) - (1 = Flagm —0))" ™ (42)
i=1
Now it follows from (4.2) that for each A > 0,
f(z;0 + A)/ f(z;0)

= [] [ £z —0—-D)/f(za - 60) ] [ Flegny — 8~ A)/Flzgmy —6) *™
=1

= exp[ > [Uzu —0~AD)—l(zz —0)]
i=1
+ (n—-m) [ logF(z(m) -6-A) - lOgF-(.’E(m) -0)) (4.3)

where F =1~ F.

We note that (4.3) is a monotonically decreasing function of 8 by the concavity
of I(-) . See Ross(1983) for more details.

Now let §(X) be the solution of the equation

f(z;0+ D)/ f(z;0) — k=0 (4.4)

where k™! = mediang,a[f(z;6)/f(z;0 + A)]. Here we note that k in (4.4)
is independent of @ by the invariance property of the distribution of (z; — ),
¢ =1,--- ,n. Then, by the monotonicity of the likelihood ratio, we have, for any
A >0,

sgn[f(z; 0 + A)/f(z;0) — k] = sgn[d(z) — 0] = sgn[é(z) + A — 6 — Al a.e. p.

This shows that da(X) = §(X) + A is a Ga-optimal (ha-optimal ) median-
unbiased estimator of § for an arbitrary A > 0.
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