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Limit Theorems for Fuzzy Martingales'
Sang Yeol Joo', Gwan Young Kim' and Yun Kyong Kim?

ABSTRACT
In this paper, conditional expectation of a fuzzy random variable is in-

troduced and its properties are investigated. Using this, we introduce the
concept of fuzzy martingales and prove some convergence theorems which
generalize the corresponding results for the classical martingales.

Keywords: Fuzzy numbers; Fuzzy random variables; Fuzzy conditional expecta-
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1. INTRODUCTION

The concept of a fuzzy random variable was introduced as a natural general-
ization of a set-valued random variable in order to represent relationships between
the outcomes of a random experiment and inexact data. By inexactness here we
mean non-statistical inexactness due to the subjectivity and imprecision of hu-
man knowledge. Conditional expectations and martingales of set-valued random
variables have received much attention in recent years because of its usefulness
in several applied fields such as mathematical economics, optimal control theory
and system sciences. In particular, Hiai (1985), Hiai and Umegaki (1977), Korvin
and Kleyle (1985), Papageorgiou (1985a, 1985b, 1987, 1993) established various
convergence theorems for set-valued martingales. These results have been ex-
tended to the case of fuzzy-valued random variables by Ban (1990), Lushu(1995),
Puri and Ralescu (1991), Stojakovic (1992, 1994), and so on.

In this paper, we introduce the notion of conditional expectations and martin-
gales for fuzzy valued functions slightly different from those in the above works
and prove some limit theorems which generalize the results for classical mar-
tingales. Section 2 is devoted to describe some basic concepts of fuzzy random
variables. In section 3 we discuss fuzzy valued measures and introduce the con-
ditional expectation for a fuzzy random variable. Finally, in section 4 we define
fuzzy martingales and prove some convergence theorems for fuzzy martingales.
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2. PRELIMINARIES

In this section, we describe some basic concepts of fuzzy numbers and fuzzy
random variables.

Let R denote the real line. A fuzzy number is a fuzzy set 4 : R — [0, 1] with
the following properties;

(1) @ is normal, i.e, there exists z € R such that 4(z) = 1.

(2) @ is upper semicontinuous.

(3) supp @ =cl{z € R: u(z) > 0} is compact.

(4) @ is a convex fuzzy set, i.e., @(Az + (1 — A)y) > min(@(z), a(y)) for
z,y € R and X € [0,1].

We denote the family of all fuzzy numbers by F(R). For a fuzzy set i, the
a-level set of 4 is defined by

. {{w:ﬂ(x)Za} fo<a<l
Lot = o
supp @ ifa=0

Then it follows that @ is a fuzzy number if and only if L1% # @ and L,4 is a
closed bounded interval for each o € [0,1]. From this characterization of fuzzy
numbers, a fuzzy number 4 is completely determined by the end points of the
intervals Lo = [ul,u2].

Theorem 2.1 (Goetschel and Voxman(1986)) For i € F(R), denote ul ()
= ul and u?(a) = u? by considering as functions of a € [0,1]. Then the follow-
ings hold.

(1) u! is a bounded increasing function on [0,1].

(2) u? is a bounded decreasing function on [0,1].

(3) ut(1) < u?(1).

(4) u' and u? are left continuous on (0,1] and right continuous at 0.

(5) If v! and v? satisfy above (1) — (4), then there ezists a unique U € F(R)

such that La® = [v!(a),v?(a)]-

The above theorem implies that we can identify a fuzzy number 4 with the
parametrized representation {(ul,u2)] 0 < o < 1}, where u! and u? satisfy
(1) — (4) of Theorem 2.1. Suppose now that @, € F(R) are fuzzy numbers
whose representations are {(ul,u2)| 0 < o < 1} and {(vl,v2)] 0 < o < 1},
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respectively. If we define

(@ +9)(2) = supg =, min(i(z), 5(y))

where 0 = I {0} is the indicator function of {0}, then

i+ 5= {(ug +v5,us +v3)] 0<a<l}

{

Now we define the metric

{Owg, )| 0<a<1}tif A>0
{2, b)) 0<a<1}ifa<0
d

on F(R) by

A

3
I

d(ii, ¥) = supy<o<1dH (Lo, Lab) (2.1)
where dg is the Hausdorff metric defined as
dp (Lot La®) = max(|ug = val, [ug = v3])-
Also, the norm ||@|| of fuzzy number @ will be defined as
Gl = d(@,0) = max(|ug|, lul).

It is well-known that F'(R) is complete but nonseparable with repect to d (See
Klement, Puri and Ralescu(1986)).

Now, we review the definition of fuzzy random variables. let (2,)", P) denote
a complete probability space. For a fuzzy number valued function X : Q@ — F(R)
and a subset B of R, X~1(B) denotes the fuzzy subset of  defined by

X HB)() = sup,cpX (w)(z).

for every w € Q. The function X : @ — F(R) is called Y -measurable if for every
closed subset B of R, the fuzzy set X ~1(B) is ¥ -measurable when considered as
a function from Q to [0,1]. A Y -measurable function X : @ — F(R) is called a
fuzzy random variable. If we denote

X(w) = {(Xaw), X5w)| 0<a<1},

then it is well known that X is a fuzzy random variable if and only if for each
a € [0,1], X} and X2 are random variables in the usual sense. A fuzzy random
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variable X = {(X}, X2)| 0 < o < 1} is called integrable if for each a € [0,1], x}
and X2 are integrable , equivalently, | | X||[dP < oo. In this case, the expectation
of X is defined by

EX = /X’dP: {(/X;dp,/xgdpn 0<a<l}.

We denote the space of all integrable fuzzy random variables X : @ — F(R)
by A(R), where two fuzzy random variables X,¥ ¢ A(R) are considered to be
identical if X = Y a.s.. If we define

AR, T) = /Q AR, 7)dP for X,V € A(R), (2.2)

then A(R) is a complete metric space with respect to the metric A.(For details,
see Kim and Ghil (1997)).

3. FUZZY CONDITIONAL EXPECTIONS

In this section, we introduce the concept of fuzzy number valued measures in
the sense of Kim and Ghil (1997) and prove the existence of conditional expec-
tation for fuzzy random variables.

Definition 3.1. Let {iy} be a sequence of fuzzy numbers in F(R) and @ € F(R).
The series Y .., Un s said to converge to & if d(3 7, 14;,4) = 0 as n — 0. In
this case, i is called the sum of the series Y .~ in and denoted by @ =Y o0 , ip
Definition 3.2. A set function ji: Y, — F(R) is called o fuzzy number valued
measure if

(1) 2(0) =0

(2) (U, Ap) = 300 u(An) for every sequence {Ap} of pairwise disjoint

elements of > .

Note that a set function fi: ) — F(R), i(A) = {(u (A)J0<a<l1}isa
fuzzy number valued measure if and only if
(a) for each o € [0,1], u} and u2 are real-valued measures.
(b) the family {u}, 2] 0 < o <1} of measures is uniformly countably
additive, that is, the convergence of pf (U 4,) = 500, ui (Ay) is
uniform in a € [0,1],7 = 1,2.
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Theorem 3.1. If X : Q@ — F(R) is an integrable fuzzy random variable, then
the set function fi defined by

g(A):/AXdP, Ae)

is a fuzzy number valued measure which is absolutely continuous with respect to
P in the following sense:

P(A) =0 = i(A4) = 0.
Proof: See Theorem 4.4 of Kim and Ghil (1997) O

The next theorem is the converse of the above theorem which generalize the
classical Random-Nikodym theorem.

Theorem 3.2. If a fuzzy number valued measure i : ), = F(R) is absolutely
continuous whit respect to P, then there exists a unigue integrable fuzzy random
variable X : @ — F(R) such that

fi(A) = /A)"cdp forall A€

Proof: See Theorem 4.5 of Kim and Ghil (1997). a

We are now ready to define the conditional expectation of a fuzzy random variable
relative to a sub-o-algebra >, of 3 . '

Theorem 3.3. Let X : @ — F(R) be a fuzzy random variable with X e A(R)
and 5, a sub-o-algebra of ) . Then there ezists a unique fuzzy random variable
Y € A(R) such that

(1) Y is 3 - measurable

(2) [4XdP = [,YdP for every A€ 3.

Proof: It follows easily from Theorem 3.1 and 3.2. O

The above Y of theorem 3.3 is called the conditional expectation of X relative to
3", and denoted by £ (X|3o)- It follows immediately from the proof of Theorem
4.5 in Kim and Ghil(1997) that if X = {(X},X2)] 0 < o < 1}, then

E(X| o) = {((B(Xal X0), B(XZ X)) 0< <1}
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Theorem 3.4. Let X, Y € A(R). Then the followings hold;
(1) If A1 and A are real numbers, then

E(\X + Aszl 30) = MEX| ) + RE(Y]Y,).

(2) B[E(X]%0)] = E(X).
(3) IfXisy, - measumble then E(X|3,) =
(4) If > C >y are two sub-c-algebras of 3, then

E[E(X| Z1)| Eo] = E(X|Zo)-

(5) d(B(X| o), BT | 5p)) < B(X, V)| 5.
In particular, [|E(X|> o)|l[dP < [{X||dP.

Proof: (1)-(4) are trivial. To prove (5), we first note that for each « € [0,1]

|B(X4] Z0) — E(YaI Xo)l < B(XE ~ YA E,) < B(d(X,Y)[ ).

Hence the desired result is obtained if we take the supermum with respect to «
over a countable dense subset of [0,1]. O

Now we conclude this section by giving a convergence theorem for conditional
expectations.

Theorem 3.5. Let X and {X,}nen be fuzzy random variables in A(R) such
that
X, 5 X as.

If there exists an integral function g : QO — R such that

| Xl < g a.s. for every n,
then B(Xa| ¥0) 5 B(X|T,) a.s
Proof: First we note that

d(Xn, X) < Xull + I1XI < g+ 1X]] aus..

Thus by the Lebesque dominated convergence theorem for conditional expecta-
tion in the classical case, we have

d(B(Xn| o), E(X| 0)) € E(d(Xn, X)| Tg) =0 aus. o
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4. FUZZY MARTINGALES AND CONVERGENCE
THEOREMS

In this section, we introduce the concept of fuzzy martingales and prove some
convergence theorems which generalize the corresponding results for classical mar-
tingales. First, we start with a sequence {Xn}ne ~ of fuzzy random variables and
an increasing sequence {5, }nen of sub-o-algebras of ).

Definition 4.1. The sequence {szn}neN of fuzzy random variables and o
-algebras is called a fuzzy martingale if for each n,

(1) X, is 3, -measurable with E|| Xn|l < oo.

(2) E(Xn+1]220) = Xn.

Puri and Ralescu (1991) obtained convergence theorem for fuzzy martingale
{X'n, Y ntnen which X, assume values in F(R) which is defined as a subspace
of & € F(R) with the property that the function o — Lot is Lipschitz ; i.e., there
exists a constant C' > 0 such that for every a, 8 € [0, 1],

dn (Lati, L) < Cla = f|

where dg is the Hausdorff metric.

Now we wish to obtain converge theorems for which Xn takes values in a sub-
space Fo(R) of F(R) that includes F1(R). Let Fc(R) be the space of 4 € F(R)
with the property that u} and u? are continuous when considered as functions of
. Then it is well-known that @ € Fo(R) if and only if for every 3 € (0, 1), there
exist at most two different z1, 2o € R such that 4(z;) = (z2) = B (see Theorem
5.1 of Congxin and Ming (1992)). Note that Fo(R) is a closed subspace of F(R)
with respect to the metric d defined by (2.1)

Lemma 4.1. (F¢(R),d) is separable.

Proof: Let Fo(R) be the family of @ € F(R) which for some positive integer k,
there exist rational points ag < -++ < ap < by < -+ < b such that

ﬂ(ai) :ﬂ(bl) :1,/](;’1 :0,]_,... ’k,

and @ is linear in between, where we adopt the conventions as follows;
(1) If 49 = min{n|a; = an},i1 = max{n|a; = an},
then d(ai) - il/k, ﬁ(a:) - ’L()/k
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(2) If iy = min{n|b; = b,},; = max{n|b; = b},
then @(b;) = 4y /k, @(b}) = ip/k.
Then Fy(R) is exactly same as the family of & € F(R) which for some positive
integer k, there exist rational points ap < --- < ag < by < -+ < by such that

ul(i/k) = a;,u?(i/k) = bj,i = 0,1,--- |k, and ul,u? are linear on each interval
[i‘Tl, %],z =1,2,---,k. Now it is easy to show that Fy(R) is a countable dense
subset of (F¢(R),d). (]

Let Ac(R) denote the set of all Fo(R)-valued fuzzy random variable X € A(R).
Then Ac(R) is a closed supspace of A(R) with respect to the metric A defined
by (2.2). Furthermore, if X € Ac(R), then E(X|3,) € Ac(R).

Theorem 4.1. If X € Ac(R), then there exists a sequence {Z,} of simple fuzzy
random variables in Ac(R) such that

Zn S5 X as.

Proof: Let Fy(R) = {ii,} be a countable dense subset of (Fc(R),d). For e > 0,
if we define

Ap ={w e Q:d(X(w),in) < €}

n—1
Bn=An- | 4
k=1

o
Y =) iinlp,(w).
n=1

Then d(X (w), Y (w)) < ¢ for all w € Q. Thus it follows that for each n € N,
there exist

o0
Y, = Za"kIBnk with Gng € Fo(R), Bni N\ Bpj =0 for i #j
k=1

such that
d(X (w), Yn(w)) < 1/n for all w € Q.

Now we choose ky so that

[o o]
P(|J Bm) < /2"
k=kn
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and let Zn(w) = }:ﬁ’;l tnklB,, (W).
Then Z, is a Fo(R)-valued simple fuzzy random variable and

S P(¥a # Z2) < co.
n=1

Hence, P(Y, # Z, infinitely often)= 0 which implies
d(X,Z,) >0 a.s. a

Theorem 4.2. Let X € Ac(R) and {3, }nen be an increasing sequence of sub-
o-algebras of 3. If we define Xn = E(X|Y,) for each n, then

d(Xn, X) =0 as.

and
A(Xp, X) = 0.

Proof: First we note that since {5(", > n}nen is a fuzzy martingale, we have
{1 Xall, 3, }nen is positive real submartingale by (5) of Theorem 3.4. Since
sup, B|| Xl < E||X|| < oo, it follows that

lim | X, =Y a.s.
n—oo

for some positive random variable Y with EY < oo.
Futhermore, since {||Xn||}nen is uniformly integrable, we have

E(Y) = limp00 Bl Xall < EIX]. (4.1)
But if we denote X, = {(X1,, X2,)|0 < a < 1}, then for each « € 0,1},
B = X =12

Hence, the convergence theorem for real-valued submartingale implies that

Jim [ 1Xi, - Xi =0
and

E|X;| < lim E|X,|

for each a € [0,1] and ¢ = 1, 2. Thus,

E|X| < lim E||X.|| = EY
n—o0
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which, together with (4.1), implies Y = || X a.s.
Similarily, it can be proved that for each % € Fo(R),

lim d(X,,d) = d(X,d) a.s.

n—oo

Now let Fy(R) be a countable dense subset of F¢(R). Then there exists A € >
with P(A) = 0 such that for each w ¢ A, -

lim d(Xn(w), ) = d(X (w),) for all & € Fy(R).

n—o0

Therefore, for each w ¢ A,
n—ro0

lim d(X,(w), X (w)) = 0. | (4.2)

Finally, A(X,,X) — 0 follows from (4.2) and the uniform integrability of
{d(Xn, X)}nen- O

Theorem 4.3. Let {X,,Y, Inen be a Fo(R)-valued fuzzy martingale. Then
{Xn} converge in the metric A if and only if there ezists a X € Ac(R) such that

for each A€ J, 3,
/ X,dP 4 / XdP.
A A

Proof: If A(X,,X) — 0 for some X € Ac(R) , then for each A € Undon

/X dP/XdP < /d(Xn,X)dP
A
< A(Xn,X) 0.

To prove the converse, suppose that there exists X € Ac(R) such that

d( / XndP, / XdP)—»0forallAeclU,Y,.
A A
Let ) be the o-algebra generated by |J,, 5, and set

Then X, € Ac(R) and since [, X,dP = [, XpdP form>nand Ac Y,
we have

/dep=/XdP=/XndemAezn.
A A A :
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Hence, E(Xoo| Yon) = = X, for each n. Therefore, A(Xn, Xo) = 0 by Theorem
4.2. O

Corollary 4.1. Let {X,,Y., . }nen be a Fo(R)-valued fuzey martingale. Then
{Xn}Ynen converges in the metric A if and only if there ezists a X € Ac(R) such
that

EX|Y,) =X, for all n.
Proof: It follows from Theorems 4.2 and 4.3. As a final result, we prove that

A-convergence is stronger than d-convergence for fuzzy martingales. First we
need the following lemma. a

Lemma 4.2. Let {Xn, 3., }nen be a fuzzy martingale and X € A(R). Then, for

each § > 0, 1
P(Supn d(Xn’Xl) > 5) 3 sup, A(XnaXl)'

Proof: Let A= {w:sup, d(Xn(w),X'l(w))? o}
Ag = {w : d(Xi(w), X1(w)) > 6 and d(X;(w), X1(w)) <& for j < k}.

Then {A}x>2 is a disjoint sequence of sets and A = U2 ,Ag. Thus,
P(4) = EP (4r) < Z/A (%o, Kn)d

1
= 3 lim sup lim Z ka,X1 )dP.

N300 M—00
But if m is fixed and n > m, then

E(Xn| 3, ) =Xk fork=2,3,---,m
Hence, by (5) of theorem 3.4,

d(Xy, X1)dP < | d(Xn,X:)dP.
A Ag

Therefore,

P(4) < —hmsupz / (X, X1)dP

n—oo

< ! lim supA(Xp, X1)
0 noroo
< l sup, A(X‘.nvxl)‘ g

)
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Theorem 4.4. Let {Xn, X ptnen be a fuzzy martingale and X € A(R). If
A(X,,X) — 0, then
d(X,,X) >0 a.s.

Proof: Let ¢,4 > 0 be arbitrary given. Then there exists ng such that
A(X'n,f(m) < €6 for n,m > ng.

Now fix m > ng. Then by Lemma 4.2, we have

.- 1 - .
P(supp>md(Xn, Xm) > 6) < 5 SUPn>m A(Xp, Xm)

< ¢ forn > ng.

It follows immediately that {f(n} is almost uniformly cauchy with respect to d.
As in the case of real-valued r.v., it can be proved that there exists a fuzzy r.v.
Y such that

d(X,,Y) =0
almost uniformly. Since A(Xp,X) — 0, it is clear that X = ¥ a.s.. Therefore,
d(Xn,X) — 0 as.. 0
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