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Analysis of the Methodology for
Linear Programming Optimality Analysis
using Metamodelling Techniques
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Abstract

Metamodels using response surface methodology (RSM) are used for the optimality
analysis of linear programming (LP). They have the form of a simple polynomial, and
predict the optimal objective function value of an LP for various levels of the
constraints. The metamodelling techniques for optimality analysis of LP can be applied
to large-scale LP models. What is needed is some large-scale application of the
techniques to verify how accurate they are. In this paper, we plan to use the large scale
LP model, strategic transport optimal routing model (STORM). The developed

metamodels of the large scale LP can provide some useful information.

* Department of Industrial Engineering, Hanyang University



1. Introduction

The light-hand-side (RHS) vectors of an LP may be changed for a variety of
reasons. We may want to conduct a sensitivity analysis to check the preciseness of
the RHS vectors, and whether or not it matters if the RHS vectors are perturbed.
Also, we may want to update the LP when additional (reduced) resources become
available (unavailable). In this case, optimality analysis comes in to play. Optimality
analysis is performed to determine the effect on the optimal solution when the RHS
vector (or the objective function coefficient) is changed. We also refine the
geographical areas and use the Hot Start technique for making the large-scale LP
runs required by the experimental design. The Hot Start method is very helpful for
this research because we could save time and effort on the computer experiments.
We use the converter programs to support the Hot Start method and create the
Hot Start files by that program’s successive use. The Hot Start method gives us
good efficiency for reducing running time of large scale LP model.

Optimality analysis generally involves multiple critical regions with different optimal
bases. This differs from “post-optimality analysis” and "sensitivity analysis” , since
those analyses deal with only one critical region. Optimality analysis of large scale
LP across multiple critical regions is more difficult than situations dealing with only
one critical region. Thus, identifying which critical region contains a particular RHS
vector creates a burden for the analyst.

Before accomplishing the optimality analysis of a large scale LP model, an
alternative programming and solution technique which is called the Hot Start
method [7] is developed. We refine the geographical areas and use the Hot Start
technique for making the large-scale LP runs required by the experimental design.
If we have a large LP, we may want to know the response results by various
changing of RHS (or objective function coefficient) vectors without re-running the
whole LP.

In this paper, we show an overall procedure of optimality analysis for large scale
LP. It is as follows: (1) selecting several interested parts of RHS (or objective

function coefficient) vectors in a large scale LP, (2) designing a metamodel associated



with the selected RHS (or objective function coefficient) vectors (For example 22
factorial design needs four iterations), (3) changing the RHS (or objective function
coefficient) vector values (10% up or 10% down), (4) running the large LP with
changed RHS vectors and obtaining the object function values of the LP (In this
procedure we need the Hot Start method for reducing run time), (5) creating a
metamode! (first order polynomial) by least squares regression, (6) validation check
for a metamodel.

This research employs the application of the methodology developed by Johnson et al.
(6] to a large scale LP. The methodology of Johnson et al. utilizes response surface
methodology. It basically accomplishes optimality analysis for LP models by developing
first order metamodels which describe the relationships between the optimal objective
function value and the RHS (or objective function coefficient) vectors of the LP [6].

We intend to create metamodels with only first order polynomials unless the higher
order polynomials (such as second order) are needed. We basically apply 27
factional and 2% full fractional designs to create metamodels by least square
regression. The problem is to verify whether or not this technique is valid for large
scale LP. For the evaluation of metamodels, two primmary measures are used: mean
squared error (MSE) and mean absolute percentage error (MAPE). Since metamodels
are really time and effort savers, the analyst will be able to observe the response of
the optimal objective function value of a particular LP very easily and efficiently

when the levels of the constraints of this LP are changed.

2. Optimality Analysis using "Hot Start” and Metamodelling
Techniques

2.1 The methodology of “Hot Start” for reducing solving time

A large scale linear program contains many variables and equations and poses
computational challenges, requiring a long time to solve. A “Hot Start” is a
technique designed to take advantage of a “good” starting solution [7] when

solving an LP. The sequence of “Hot Start” when producing solutions for use in



metamodel development depends on the number of changing factor levels in the
experimental design.

An algorithm for the “Hot Start” method is as follows:
step 1 Run original LP and get the value of optimal variables.
step 2: Change the value of optimal variables to an attachable program ( “Hot

Start” program) for next LP.

step 3: Attach “Hot Start” program to main LP.
step 4! Change the RHS vectors of LP and run this LP with the attachable

program as a staring point of variables.

2.2 Metamodelling Techniques in Optimality Analysis

RSM is used to develop a methodology for optimality analysis of LP. Using these
techniques, metamodels are developed to predict the optimal objective function value
of an LP for various levels of the constraints. These metamodels are valid over
multiple critical regions, eliminating the usual requirement of determining which
critical region contains the RHS vector of interest. The metamodels are used to
determine the responsiveness of the optimal objective function value to changes in
the RHS wvector while illuminating key relationships between the objective function
value and the elements of the RHS vector. In some cases, the metamodels can
actually be used as a surrogate model for the entire LP model. The metamodels are
tested by comparing the predictions to the optimal solutions obtained by solving the
linear programming model.

2.2.1 Two~Level Factorial Designs

Factorial designs used in this research involve several factors where it is desired
to investigate the joint effects of the factors on a response variable. As the number
of factors in a 2* factorial design increase, the number of runs required for the
complete replicate of the design rapidly outgrows the resources of most
experimenters. If the experimenter can reasonably assume that certain high-order
interactions are negligible, then information on the main effects and low-order
interactions may be obtained by running only a fraction of the complete factorial

experiment.



A design containing 2% runs is called a fraction of the 2 design or, more simply,
a 2" fractional design. These designs require the selection of p independent design
generations. A reasonable criterion is to select the generator such that the resulting
ok design has the highest possible resolution.

After establishing the metamodel designs, the next step is to code the level of the
constraints. Coding is achieved using a simple transformation given by

b,i— b;p

Z,‘= S;‘ (»

where b; is the actual numerical level of the i constraint. In this study, since we
use two-level factorial designs, we can say that by has bimexr and bimin indicating
the high and the low levels of the constraints. Here bi, is the midpoint between b;max
and bimin If Si is taken to be (bimax = bimin) / 2, then bimax and bimn are mapped -to
1 and -1, respectively [6].

The experimental designs used to develop the metamodels of interest in this
research were determined according to the number of factors they were dealing
with.

2.2.2 Least Squares Regression

The experimental designs are selected so that the experimental error variance is
minimized. We obtain our response by solving a large scale LP for each design
point. In this case, no experimental error is associated with the solution from the LP
model. Since there is no experimental error, the purpose is to minimize the
misspecification bias.

In this research, we approximate the LP model with a simple model. To achieve
this, we apply least squares regression to the data obtained from the experimental
design phase of the methodology of Johnson, et al. Let denote the optimal objective
function value as a function of the factors. Least squares regression develops an
initial metamodel approximating with a first order or second order polynomial since
those types of polynomials are able to define some concave surfaces such as

hyperplanes [6]).

We can assume the functional relationship of the following form :

Y=2Zp+¢ (2)



The experimental value is replaced by Z which is a matrix of coded values (1 or
-1 obtained be Equation (1)). Y is an m X1 vector of known response values (in this
case optimal objective function values obtained form STORM), Z is a m Xp (where p
= n + 1) matrix of the coded levels of the variables at the experimental design point,
is a pX1 vector of coefficients, is an m X vector of the random error, m is the

number of data points, and p is the number of variables in the assumed function.

B=(Z27'zY (3)

and the fitted regression model is

Y=23 (4)

3. Application and Result

In this research, STORM was chosen as a large scale LP for the application of
RSM. The Strategic Transport Optimal Routing Model (STORM) is based on a
model built by Barton and Guiriaer (1967) of Lockheed to analyze the peacetime
employment of the new C-5 cargo plane. STORM was developed at the Air Mobility
Command (AMC) to assist in a major study of the entire scheduled cargo system
that must provide two main types of service to its overseas customers. The first is
to provide sufficient cargo capacity for a given period of time (usually for one
month) to meet all demands for carge movement between the pairs of bases in the
system. This cargo capacity i1s known as the cargo requirement. The second is to
provide a minimum number of flights per month between certain cities. This number
is called the frequency requirement. The basic purpose of STORM is to select the
mix of routes and aircraft that will meet the monthly cargo and frequency
requirements of AMC while minimizing the cost of cargo handling, military aircraft
operations, and commercial aircraft leasing [8].

The set of routes, maximum payload, and total flying hours for each type of plane
are the main resources available. Using this information, STORM constructs a
feasible cargo movement plan. A route is the sequence of legs to be flown by a

single aircraft. Each aircraft’s maximum payload is an average based on the fuel



loads and types of palletized cargo that are generally carried on the planned
missions.

The flying hour limit for military aircraft is derived from the Air Force flying
program which is necessary to maintain proficiency in worldwide operations and to
train crews. Versions of STORM for UNIX Workstations have been developed using
the general algebraic modeling system (GAMS) modeling language [1] which makes
data management and programming very easy. GAMS also allows the analyst to
modify the model quickly for specific analyses, investigating specific gquestions, or
enforcing operational considerations locally.

This section presents the comparison between Hot Start results and non- Hot
Start results and also shows the numerical results and their interpretations. In this
research, six metamodels of STORM are developed to examine the applicability of the
methodology of Johnson et al. which describes the relationship between the levels of
the constraints and the objective function value for an LP, and predict the optimal
objective function value for the LP given specific levels for the constraints. The level
means the coded form of the factors, which are denoted by Zi 1 =1, ... ,n in the
following tables. The test metamodels are developed by changing the RHS and unit
cost vectors by 10 percent ( = #0.1) and considering the five areas of AMC s
channel system .

The STORM model uses the preceding information to formulate a linear
programming model which can best be described as follows:

MINIMIZE : Total cost incurred for aircraft operating hours and cargo handling.
SUBJECT TO:

1. Meeting as many of the cargo movement requirements as possible.

2. Meeting all requirements for service frequency.

3. Operating within each aircraft type’s flying hour and payload limits. Operating
within each base’s limit on monthly sorties.

We constructed six metamodels. In Metamodel 1, we simply choose two factors,
tonnage requirement (TREQ) and. frequency requirement (FREQ) because we want to

start this research with a simple design.



{Table 1] “Hot Start” comparison table for metamodel 1

Metamodel 1

Treatment TREQ FREQ Non- “Hot Start” Reduced

1 (Seq:Cha) “Hot Start” ratio (%)
1(1:2) Down 10% | down 10% - 7748 7042 9.11
22 down 10% up 10% 8667 7326 15.47
3(4:1) up 10% down 10% 10167 7400 27.21
4(3:1) up 10% up 10% 7476 6593 11.81

(Seq:Cha) : (the number of sequence : the number of factor changes)

Metamodel 1 : minimized-cost values for 4 treatment

Treatment TREQ FREQ Min. Cost (dollars)
1 -1 -1 33644710.27
2 -1 1 34692518.12
3 1 -1 40567833.21
4 1 1 41351256.59

By comparing, we learn that reducing the solving time is possible by the “Hot
Start” method and the efficiency of the “Hot Start” method for saving time is
about 159% in Metamodel 1. We expect this method is helpful for models with more
factor treatments.

After analyzing Metamodel 1, we changed one more factor, the unit cost vector for
Metamodel 2 which shows us the new relationship including the new factor. In
Metamodels 3, 4, 5, we separate the factors of Metamodel 2 because we want to
analyze each factor’ s geographical relationship with the objective function value in
detail. In Metamodel 6, we integrated metamodel 4 and 5. It looks like metamodel 2
but the two factors in Metamodel 2 TREG and FREQ are separated into five areas.

This makes it possible to analyze the geographical relationships of these two
factors with the objective function value and unit cost vector. Metamodel 4 shows
the relationships among the total cost (objective function value), TREQ and unit cost

vectors of five areas which are shown in Table 2.



[Table 2] Five Areas in the AMC Channel System

Area Region

North America including U.S.A. territories.

1

2 South America

3 Europe and North Africa.

4 East Asia.

5 Central Pacific and Middle East.

The Al, A2, A3, A4 and A5 vectors for TREQ which correspond to areas 1, 2, 3,
4, and 5 were simply derived from the TREQ RHS vector by separating the elements
of the TREQ vector into the related areas. These values are changed up and down
10%. We use a 2572 fractional factorial design for this metamodel. Metamodel 5 shows
the relationships among the total cost (objective function value), FREQ and unit cost
vectors for the five areas. We also construct a 2% fractional factorial design for this
metamodel. Metamodel 6 is a combination of Metamodel 4 and Metamodel 5 and it
has a 2"°% fractional factorial design. In Figure 1 the six metamodels and their

relationship are presented.

{Figure 1] The six metamodels and the research directions

Metamodel 1
TREQ, FREQ

l

Metamodel 2
TREQ, FREQ,UNIT COST

T

Metamodel 3 Metamodel 4 Metamodel §
TREQ ( FIVE CONTRIES: TREQ (A1,A2,A3,A4,AS5) FREQ(A1,A2,A3,A4,A5)
Germany, U.K,, Spain,

Italy, Turkey) UNIT COST UNIT COST

—

Metamodel 6
TREQ (A1,A2,A3,A4,A5)
FREQ (A1,A2,A3,A4,A5)

UNIT COST




[Table 3] Factorial Designs for metamodel

Metamodel The component of Factors Factorial Design
1 2 factors (TREQ, FREQ) 2 Factorial Design
2 3 factors (TREQ, FREQ, 2’ Factorial Design
UNITCOST)
3 5 factors (TREQ:Germany, 2™ Fractional Factorial Design
U K, Spain, Italy, Turkey)
4 6 factors (TREQ: Al, A2, 2w *? Fractional Factorial Design
A3, A4, AS and UNIT
COST)
5 6 factors (FREQ: Al, A2, 2v*? Fractional Factorial Design
A3, A4, A5 and UNIT
COST)
6 11 factors (TREQ: Al, A2, 2;v ' Fractional Factorial Design
A3, A4, A5, FREQ: Al,
A2, A3, A4, AS and
UNIT _COST)
[Table 4] Regression Polynomials of Metamodels
Metamodel The component of Factors Regression Polynomials
]
2 factors  (TREQ, FREQ) | Y = 37564080 + 3395465 Z, + 457808 Z,
R’=0.9996
2 3 factors (TREQ, FREQ,
UNIT COST) Y = 37563857 + 3395306 Z, + 457768 Zo+
3384940 Z;
R*=0.9958
3 5 factors (Germany, UK,
Spain Italy, Turkey) Y = 37521413 + 256260 Z, + 43758 Z,+
25919 Z,+ 14060 Z, + 76374 Zs
R?=0.9989
4 6 factors (TREQ: Al, A2,
A3,A4,A5 and UNIT |Y=37762620 +2427846Z,+ 54011 Z,+
COST) 651718 Z;+ 174877 Z,+ 91069Z;
+3399950 Z4
R’ =0.9947
5 6 factors (FREQ: Al, A2,
A3,A4,A5 and UNIT | Y=37595793  + 109463 Z, + 37153 Z,+
COST) 172255Z; +89285Z, +29304Z; +
3380357 Zs
R*=0.9998
6 11 factors (TREQ: Al, A2,
A3,A4,A5, FREQ AL, | Y=37901155  +2407677Z, + 53079 Z;
A2, A3, A4, A5 and + 662569 Z3 + 175171 Z, + 63506 Zs
UNIT  COST) +104667Zs + 28138Z, +184575Z,
+ 85820 Zo +43623 Z,o +3417187Z,,
R’=0.9927

By using these methodologies, we can analyze the accuracy of the metamodels and

to describe the key relationships among the optimal objective function value, the
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objective function coefficient vectors and the RHS vectors of interest (shown in
Table 4). It is possible to predict the response of the optimal objective function value

easily and efficiently when the levels of the factors are changed.

4. Measuring the Performance of the Metamodels

An accurate metamodel means a metamodel with a small residual. For example
Metamodel 1 is validated by a 22 full factorial design where the factors were coded
at the (+05, -0.5) level (Perturbed by 5%). The test and validation design points on
a coordinate axis. Note that the point (0,0) is the center point, for both designs. The
predictions obtained from the regression metamodel are compared to the true optimal
objective function values of the validation design by using some measures. In this
research, two primary measures were used to evaluate the performance of the
metamodels. The first is mean squared error {(MSE) and the second is mean absolute
percentage error (MAPE) [6].

M ean squared error (MSE) is a measure of accuracy computed by squaring the
individual error for each item in the data set, and then finding the average or mean
value of the sum of these squares. The mean squared error gives greater weight to
large errors than to small errors since the errors are squared before being summed.

MSE is defined by

T (r-vy

MSE=—=1 (5)
m

where Y,- is the predicted value of the objective function at the i validation point

(Z = 05), m is the number of validation points and Y ! is the true value of the

objective function at the " validation point (level changed up and down 5%).

Mean absolute percentage error (MAPE) is the mean or average bf fhe sum of all
of the percentage errors for a given data set taken without regard to sign. Thus,
their absolute values are summed and the average computed.

MAPE is given as follows:

-11-



MAPE=

Y-Y?

L A= r;
m =1 Y

v

%100

{Table 5] Comparison with validation design for metamodel 1

x ~
Treatment A B Y* Y (Z= 10.5) Y- Y%
1 05 0.5 35570398.00 3563744350 67045.50
2 0.5 05 36029101.77 36095251.50 66149.73
3 0.5 05 39006052.42 39032908.50 26856.08
4 0.5 05 39423802.92 39490716.50 66913.58
MSE MAPE
3517390517.68 0.152666889
[Table 6] Comparison with validation design for metamodels
Metamodel Design MSE MAPE
1 2 Factorial Design 3517E6 0.153
2 2 Factorial Design 9460E6 0.151
3 2" Fractional Factorial Design 592E6 0.059
4 21y * Fractional Factorial Design 65254E6 0.602
5 2 v*? Fractional Factorial Design 3701E6 0.137
6 2" Fractional Factorial Design 115909E6 0.830

(6)

We showed the validation design in Table 5 and 6. Metamodels are validated by

factorial design where the factors were coded at the (+0.5, -0.5) level. The MSE and

MAPE value indicate that metamodels are very accurate models.

5. Conclusion

The “Hot Start”
save time and effort on the computer experiments. The "Hot Start”

good efficiency for reducing running time of large scale linear programming model.

method was very helpful for this research because we could

method gave us

The metamodelling methodology for the optimality analysis of LP works very well
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for the large scale linear programming models. The metamodels described the key
relationships between the optimal objective function value and the RHS vectors. The
response surface of the optimal objective function value is a relatively flat surface.
For that reason, the optimal objective function value can be estimated by a simple
polynomial with remarkable accuracy.

Metamodels have the form of a simple polynomial and predict the optimal objective
function value of an LP for various levels of the constraints. Since metamodelling
methodologies are really time and effort savers, it is possible to predict the response
of the optimal objective function value easily and efficiently when the levels of the

factors are changed.
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