=& 99-24-6B-5 FFEAISS =23 996 Vol.24 No.6B

4% gf239] HUIEA o7 HES ATl

2l 2AlEE gaels

Bsid o] F Y, F oA, F Ut H A, R Ett, e At

On-line Scheduling Algorithms for Reducing the Largest
Weighted Error Incurred by Imprecise Tasks

Chun-Hi Lee*,Won Ryu**, Ki-Hyun Song**, Kyung-Hee Choi***, Gyhyun Jung***,
Seung-Kyu Park*** Regular Members

2 o

B =R gdEaAs 3 A% gamis AAYHE 2AEE o Aske o5 HAAE Ha
gals el AdFE duEES Ak SRS AeE 2 saE YuElEeR vtk ARISE
duE|Zdde Wi eamr)l 228 dvit AAEEE F3sie], A ehemge] A F 2 Adedsl
ZAd Havl 28 7zt ekazEe SRS R e daEiFede wdE eheage] ¥ Azl
& AR A7} oE AU PPLRE AR AeE dajEe o3l 2218 LP FAHE At
Eawr) ags) AdE QuelEg AAsle, seleE ¢uel$2 Shih and Liu[4] & 2l dae}Es
Aslgdch AEdolde Bl ol A9 AMRS AR A e d7aby B} Abgs] R mw), & F
defg o] s A7le Ae FEslch

ABSTRACT

This paper proposes on-line scheduling algorithms that reduce the largest weighted error incurred by preemptive
imprecise tasks running on a single processor system. The first one is a two-level algorithm. The top-level
scheduling, which is executed whenever a new task arrives, determines the processing times to be allotted to
tasks in such a way to minimize maximum weighted error as well as to minimize total error. The lower-level
algorithm actually allocates the processor to the tasks. The second algorithm extends the on-line algorithm studied
by Shih and Liu[4] by formalizing the top-level algorithm mathematically. The numerical simulation shows that
the proposed algorithm outperforms the previous works in the sense that it greatly reduces the largest weighted

etror.

ation[1]. This allows users to get the approximate
I. Introduction result with acceptable quality even when the exact
result with the desired quality cannot be obtained
The imprecise computation technique inherently in time. If all imprecise tasks are known before
prevents imprecise systems from being terminated applying scheduling algorithms, it is enough to
abnormally due to a lack of processing time and schedule them with static or off-line scheduling
produces non-optimal results with graceful degrad techniques such as ones proposed in [1,2,3,5].

* olxuj)alw 7]} 28} (chlee @seri.re.kr), o M B AE HodAr,

*ik o)l 2o ¥ar A B %) 7 FE-LEH-({khchoi, khchung sparky } @ madang.ajou.ac.kr)
E=EHF 0 99027-0121, Hedz}: 19993 19 21

1032

YRR sane HrEA L7E Has Avle ek AAEY daeld

However when on-line tasks arrive randomly, it is
impossible to schedule the tasks at an instant and
thus one should consider on-line scheduling
algorithms for scheduling the tasks.

In an imprecise computation model, each task t;
is decomposed into two subtasks: the mandatory
subtask M; and the optional subtask O;. Let M;
and O; be the processing time of M; and O,
respectively, and m; + o; = p;. In [4], Shih and Liu
have proposed an on-line scheduling algorithm for
minimizing the total error incurred by imprecise
tasks. By the error e;, we mean the difference
between pi and the total amount of time assigned
to the task, x; ie, & = p; - xi. By weight w,
we mean the importance ratio of error, and the
weighted error is defined as we;. The total error

is the sum of errors of all tasks, ie., §1e" By

minimizing total error, the processor could be
utilized at maximum. But, in some cases,
minimizing maximum weighted error is preferred
to only minimizing total error. Inspired by this
philosophy, many off-line scheduling algorithms
for minimizing maximum weighted error of
imprecise tasks are proposed [3,5]. However little
work has been done for on-line scheduling
algorithms reducing the largest weighted error for
preemptive imprecise tasks.

In this paper, we propose two on-line schedul-
ing algorithms for imprecise on-line tasks. First,
we address a two-level on-line scheduling
algorithm that tries to reduce the largest weighted
error : top-level and lower-level scheduling algori-
thm. The top-level scheduling algorithm is execut-
ed whenever a new task arrives, and determines
the amount of processing times to be allotted to
all schedulable tasks at that instant, while mini-
mizing the maximum weighted error. The
minimization process is modeled as a LP probl-
em. Thanks to the model, the computation compl-
exity of the procedure for allocating processing
time to the scheduled tasks decreases significantly.
For the lower-level scheduling algorithm that
actually allocates the processing power to tasks,
there are many well-known algorithms such as the

algorithm by Shih and Liu {4] and the EDF
algorithm[6]. As shown later, numerical simula-
tions show that the distribution of weighted errors
depends heavily not only on the top-level schedul-
ing but also on the lower-level policy. For
example, the lower-level scheduling based on a
reservation policy [4] produces a schedule which
utilizes maximum processing power. However it
forces some tasks not to be scheduled, while they
are scheduled under the EDF strategy.

This paper is organized as follows. Section two
describes two proposed scheduling algorithms with
mathematical proofs. In section three, the results
of numerical simulations are presented, and the
last section concludes this paper.

I. Scheduling Algorithms

1. Two-level scheduling

It is a difficult problem to get an on-line
schedule for imprecise tasks which satisfies
criteria such as minimizing total error or minimiz-
ing maximum error. It is almost impossible to get
an optimal on-line schedule for imprecise tasks,
minimizing total error or minimizing maximum
weighted error without a priori knowledge of the
parameters for tasks such as arrival times and
’deadlines. In this section, we propose a heuristic
two-level scheduling policy under the constraint
that minimizes the largest weighted error.

The top-level schedule, which is executed
whenever a new task arrives, determines the
amount of processing times to be allocated to all
schedulable tasks at that instant, i.e. all tasks
present in the system. Therefore the top-level
scheduling algorithm can be modeled as a static
linear optimization problem: Given a set of
preemptive imprecise tasks with identical arrival
times, known deadlines, processing times of
mandatory and optional parts, and weights,
determine the amount of time to be allocated to
each task so as not only to minimize the
maximum weighted error but also to minimize the
total error. Sub-section 2.1.1 describes the

1033

A=FAIE3 =FA] "99-6 Vol.24 No.6B

top-level scheduling algorithm and its mathemati-
cal foundation in detail.

The lower-level algorithm actually schedules
tasks into service. The maximum of service time
is bounded by that obtained by the top-level
algorithm. The amount of execution time that
each task receives actually depends on the arrival
time of new tasks. In other words, the amount of
service time determined by the top-level algorithm
is valid only until the next new task’s arrival.

1.1 Top-level scheduling Formulation of
problem

As described above, top-level scheduling
algorithm distributes intervals to tasks present in
the system, which allows us to assume that task
arrival times are identical momentarily. Consider a
set of N imprecise tasks with identical arrival
times, deadlines d; <d;+;, and arbitrary weights
wi’s. Let e, be the error of task # and x;; be the
amount of time assigned to task # in interval (d.;
, d). Then, the top-level algorithm may be
formulated as :

minimize z

subject to
1) z=2wiei, i =12.., N
2)ei=pi-xi, i =L2.,N

3) 21x,~,j =x, i =12.., N
=

4 ﬁ]xi,, =d—dy, j=12.., N
=7

S) ;i =2m;, i =L2,.., N

The above formulation is a LP (Linear
Programming) problem. This LP problem can be
solved by iteration, solving the auxiliary optimiza-
tion problem P, kK = N, N-1,.,2,1. P, is a
sub-problem with tasks #,t+s,...,ty. Obviously P; is
equivalent to the original problem. And the
problem P; can be written as :

minimize z
subject to
1) z >wiei*wixik , i = kk+1,...N

1034

2) ﬁ::kxi,k=dk —dk-1

3) xik <ei*, i = kk+1,...,N
4) xi,k >0, =20, i = kk+1,..,.N

where e is the updated error of task # which
is obtained by iteration during from interval (dv.s
, dnv) to interval (di , di+;). Note that all x;;, j
> k, are known in the problem P, and it suffices
to get xix for i = kk+1,k+2,.,N.

In order to simplify the explanation without
loss of generality, suppose that & is equal to one
and let y; be x;x. We introduce slack variables S;
for each task #, so that the formulation of the
previous section becomes

minimize 2
subject to
1) z+wiyi —si=wiei* , i = 1,2,..,.N

2) glyi =1

3) yi 20, si 20, 220, i = 1L2,.,N,

where [is the length of interval, (dad:), to be
distributed to tasks.
The formulation can be rewritten as the

following matrix form.

1 0 00 0 Lo 0oy wei
1wl . - LY ,
10 w200 ..0 0 -1 0.0/ Waei
10 0awo . o0 o o —iL.of |

o N .
Pl 0000 ...0 10 0..0]|=s .
L owlh 9 000 —1 0 0.0 “’Nf"

SN,

Let B be the left half of the first matrix (N+1
by
N+1). And let y be the uppe r half of the vector
in the left (N+!1 elements) and lower one be s.
Let E be the vector in the right side. Then, we
have the following equation,

=E)]

ERRAY game) ok LFE Aa Ale LRl 2AEY daEE

Let 7:+=l/wi andy =1/X y; Then, for matrix
B, inverse matrix B’ exists and,

1w 0 0 ... C
10 w 0 ... 0
106 0 w ... 0 nr nr .. vy]
B= B-I=|n—nnr —nrr .. —nmwr ny
. - - e
00 0 0 ... w nnr Ny YNT YNYNY 7Y
01 1 1 .. 1

Applying B-1 to the equation (1), we get

y-B-1 []]s=B-1E
0

This equation becomes:

[z-7Y 7.5,
Yi=TS HYY D TS
Y2 = V282 +7172 YiSi

1 [rEe -0]
el -y v (X e =D
e -y ¥ (X el =D

@

\»yN_YNSN-FYNYZ Yisi Le;l "YNy(z e:_')

Let a=x2e;—) and B=7r2rs. Then,
equation (2) is rewritten as:

z-8 a

Y1'Y1(51'B) e -v.a

Y2V (s2-8) e;"}'za

_ | 3
Yn -Yn(sy - 8) ey ~Yna ®

In the problem of LP, the optimal solution is
found from the extreme point. Applying this
property, we get the following theorems.

Theorem 1: For some i, ife;— ya<0 , then yi
=0

Proof: This comes from the fact that
el —rya=y;— r{s;— H<0 means either y; = 0 or
s; = 0 since the optimal solution can be found
from the extreme point. This leads to y; = 0.

Theorem 2: Suppose that tasks are sorted in
descending order of wie. e,—7ia,{0 implies
@1~ Vi 1@r+1<0.

Proof: It can be proved without difficulties,
and so it is omitted.

With the help of the above properties, in the
process of finding the optimal yi for a given
interval, it is sufficient to perform the
optimization process only for the tasks such that
ei—y,220. Once all tasks with ¢} —7.2>0 have
been found, the maximum weighted error and
processing times to be allocated to the tasks are
determined.

Theorem 3: For all i, if e;—v.a>0, then we
have the solution z=@ and y,=e;—ra

Proof: The optimal solution can be found from
the extreme point in LP problem. At the extreme
point where all si are equal to zero, the
inequality relation 1) in the problem formulation
becomes that of equality. This means that no
more optimal solutions exist. The value B8
becomes (defined as the summation of si) equal
to zero. From equation (3), we get the solution

.
yi=e —7ra

Based on the above theorems, the top-level
algorithm is derived as in Figure 1. In the
algorithm, u and v denote the indices of tasks
and intervals, respectively, and initially all y’s are
set to zero. ! denotes the length of interval.

Example.

Consider a task set with three imprecise tasks,
t;, t and 5. Their characteristics are shown in
Table 1. r; in Table 1 denotes the arrival time of
task #. To schedule them, the proposed top-level
algorithm is applied backwards to intervals
(11,16), (8,11) and (3,8). Since #; is the only task
that can be scheduled in the interval (11,16), the
interval (11,16) is allocated only to t;. However,
in the next interval (8,11), as the first step, two
time units are allocated to ¢, which is the
processing time requirement of its mandatory part
and then the optimization procedure is performed.
The optimization procedure produces an outcome
that e;= 2, e;= 1, wie; = 0.82, wpe;=0.53, I=1,

R SRR
a=a2=r(e+e—D=0/(Fq +53)

1035

FFEAIF =77 '99-6 Vol.24 No.6B

(2+1-1)=0.231*2=0.46,

X0= e3—y;a=2—1/0.41%0.46=0.872, and xp=
e;— 7,0 =1—1/0.53%0.46=0.128. #3 and f, have
the same weighted error, 0.462. For the last
interval (3,8), three unit times are allocated for
task t;, and then the remaining part of the
interval is optimized. By performing the similar
optimization procedure, we have that e}=1.128,

e;=0.872, e]=2, wse;= wye;=0.462,
wiel=0.06, =2, @=as= 7i(3 i

= (Gl + 555 + s)4~ =002655

L = a list of tasks sorted in decreasing value of wie, initially &

u=N
v =N
! = dv-dy;

while(v=>1 and u>1)
ifims-x,)>1, that is, task t, has not yet received a
sufficient amount of time to execute its mandatory
part and the interval is sufficient lafge to allocate

to t, then
X =xu+thv=v-L1l=4d -dy
else ifim, - xu) = | then
Xu = xu * 1, insert t, into L
w=u-Lv=vl l=d -d
else if u>v then
Xy = Xy, insert t, into L
w=u-1
else /*we are sure that u = v and all tasks ty, ty+s, ... Iy
have received sufficient amount of time to execute

their mandatory parts %/

1) perform optimization procedure as follows
(1) find the largest number k* among k such that

exe1* - Yee1Qer <0 and e - Ly > 0,

where ar = Yi¥(ﬁl e* - I), Ii* = ﬁ T
= =1

(If ex* Yaax > O for all k, then k* becomes the
index of the last task)
(2) Let a be the a*, and yi = e* - Yia for i<k*
(3) Update e* by e* - y; and x; by for xi+y; the tasks
t; that have received additional processing times
(4) Update L by letting tasks with the maximum
weighted error be one task
Du=u-1,v=vl
end if
end while

Fig 1. Proposed algorithm producing minimum of

maximum weighted error.

1036

Table 1. Characteristics of a task set with three tasks

task ri di mi oi pi wi

tl 3 8 3 2 5 0.03

t2 3 11 2 1 3 0.53

13 3 16 4 3 7 041

Table 2. Results of the top-level algorithm

Interval
3.8) 8,11) | (11,16) Sum
| task
t] 3.230 3.230
2 0.772 2.128 2.900
13 0.998 0.872 5 6.870
Sum 5 3 5 13
*2=0.053, X3=e;— rya=1,128—1/0.41

*0.0531=0.998, and

X21= &3~ y,a=0.872 —1/0.53%0.0531 = 0.7718, and
= e;— na=2-1/0.03%0.0531=0.23. As a
result, the tasks ¢;, f;, and ¢; have different
amount of errors, 1.77, 0.100, and 0.13,
respectively. But they have the same weighted
error,0.053. Table 2 shows the processing times
allocated to the tasks in each interval by the
top-level algorithm.

The complexity of the proposed algorithm in
Figure 1 is O(NLogN). The tasks with the same
weighted error can be handled, throughout
iterations, as one task such that its weight is
equal to 1/2Y(1/w,) and its error is equal to the
sum of errors of the tasks with the same
weighted error. Therefore, the number of iterations
that optimization procedure (the step 1) in Figure
1) is executed is bounded by O(N), which implies
that the worst case complexity is O(NLogN).

1.2 Low-level Scheduling

The purpose of the lower-level scheduling is to
actually assign a processor to tasks according to
the amounts of processing time determined by the
top-level algorithm. Whenever a new task arrives,
the top-level algorithm is executed and the time
allocation information is recomputed. Then the
processing time of optional part is modified as

THAAR eaas HuFA] LR7E A4 Avle el 2A4EY 4l

the difference between the time produced by the
top-level algorithm and m(i,.e., x - m), but m;
itself is not modified. The lower-level scheduling
allocates the processor to the tasks based on the
modified processing times. There are many ways
to schedule the tasks, once their processing times
are determined.

One way for the lower-level scheduling is to
utilize the results obtained by the top-level
algorithm. Figure 2 depicts a schedule for the
task set in Table 1, assuming that no new task
arrives. Let LA be the low-level scheduling
algorithm based on this philosophy. Another way
for the lower-level scheduling is an algorithm
trying to complete the mandatory parts of all
tasks as soon as possible, and then trying to
assign the processor to the tasks up to the time
units determined by the top-level algorithm. Let
LB denote this method. Figure 3 depicts the
schedule by LB. One may also consider applying
an off-line scheduling algorithm that focuses on
minimizing total error. But it is not appropriate
since the use of off-line scheduling only for the
low-level scheduling introduces an additional
overhead without any gain.

Note that in Figure 3, the interval (15,16)
becomes idle and the final weighted error is not
equal to that produced by the top-level algorithm.
As shown in Figure 3, the LB may underutilize
the processor power and the maximum weighted
error incurred by tasks may be greater than that
by the LA. From the point of view of
minimizing total error or minimizing maximum
weighted error, it looks like that the LA works
better than the LB. However, the result of
simulation shows that there is no big difference
between the values of minimum of maximum
weighted error produced by both the LA and the
LB for the cases that the processor utilization is
high.

The task set that can be scheduled by the LB
is larger than that by the LA. In other word any
task set that is schedulable by the traditional EDF
is still schedulable by the LB. In the next section

3 623 7002 8 10.13 11 16
l 17] I‘zl’s“l’sl 5]

Fig. 2 Low-level scheduling (LA) using the information
by the top-level schedule

3 6 8 12
I 7] I 5] I 7] [3

Fig. 3 Processing time allocation by the LB

9] I3]

Fig. 4 Reservation when task t3 has arrived.

we describe another alternative, which is an
extension of the algorithm proposed by Shih and
Liu[4].

2. On-line Algorithm with
Reservation(OAR)

In this section, we describe a technique called
on-line algorithm with reservation (OAR) which is
an extension of the on-line algorithm studied by
Shih and Liu {4]. When a new task arrives, the
OAR reserves an appropriate amount of intervals
in a manner that the sum of reserved intervals is
equal to the processing time for the mandatory
part of the task. As in the algorithm by Shih and
Liu, if it is not possible that the OAR reserves
sufficient time for the taskthen the OAR
determines that the task is not schedulable. T he
intervals that are not assigned for themandatory
part are used for minimizing the maximum
weighted error. For example, consider the
following scenario. Two tasks, #; and f, have
arrived before time 3, and their mandatory parts
have been executed partially. At time 3, ¢
arrives. Figure 4 depicts a reservation in this
case. The shaded rectangles represent the intervals
available for reducing the maximum weighted
error.

It is not difficult to see that the proposed
top-level algorithm working for the intervals
constructed from deadlines is still valid for the
intervals (3,5), (8,9), and (11,12), as well. In fact,
the allocation in Table 3 is same as the allocation

1037

FZEA 3] =24] 99-6 Vol.24 No.6B

produced by the optimization procedure of the
top-level algorithm. The total amount of time that
is additionally allocated to the tasks ¢#;, £z, #; in
each interval is same as in Table 2.

Table 3. Allocated times by the OAR for the task set in

Table 1.
Interval
3.5) 8,9 | (11,12) | Sum
| task
t; 0.230 0.230
tz 0.772 | 0.128 0.900
ts 0.998 | 0.872 1 2.870
Sum 2 1 1
3 6.23 913 16
4 b b

Fig. 5 Task allocation without a new task

Fig. 6 Task allocation and reservation for a newly
arrived task t4

Once the information is obtained as in Table 3,
t; that has the earliest deadline is scheduled until
a new task arrives or it terminates. If no task
arrives during 3.23 time units (the sum of m; and
the additional allocation), the interval (5,8) which
has been reserved for 1; is released. Next, the
scheduler schedules # during 2.900 time units.
The same procedure is repeated untii no more
intervals are available. Figure 5 depicts a schedule
for the case that no task arrives until time 18
and Figure 6 depicts a reservation by the OAR
for the case that a new task # with ds = 10 and
m;=1 arrives at time 5. In this case, the
reservation for the mandatory part or the
processing time allocation for minimizing
maximum weighted error can be done in a similar
way.

Figure 7 describes the OAR algorithm. It is
executed whenever a new task arrives. Since it
is a natural extension of the algorithm by Shih
and Liu [4], it is easy to check that the algorithm

1038

OAR tries not only to minimize maximum
weighted error but also to minimize total error.
The weighted error incurred by tasks is not
optimal in the sense that maximum weighted error
may be greater than those by the off-line
algorithms. And the maximum weighted error
depends also on the arrival of tasks or the
characteristics such as their processing times or
weights. We claim a following theorem without
proof, since it is a direct consequence from [4].

Lett be a newly arrived task

Reserve intervals fort enough to execute its mandatory

If the reservation fails, then
the task t could not be scheduled by the proposed
algorithm, and reject t

else

(1) get a list of intervals,
minimizing weighted errors.
(2) perform the same minimization procedure for the
intervals in L as in section 2.1.2.
(3) modify the processing time according to the resul;
the optimization.

end if

Schedule tasks in increasing order of deadlines until a nex

task arrives, and modify the reservation as in the algorithi

Shih and Liu[4]

L, that could be used fo

Fig. 7 Algorithm OAR

Theorem 4.
The OAR produces schedules minimizing total
erTor.

. Simulation

In order to check the performance of the
proposed on-line algorithms, we have performed a
series of exneriments. For each exneriment. we
have generated a task set with three hundred
tasks, modeled as an M/M/Infinity queuing
system, in which the distribution characteristic of
task arrival time is Poisson, the service time is
exponentially distributed and there are infinite
number of servers. The processing time of
mandatory part of each task is taken uniformly
from zero to (its deadline its release time) * p,
where p is fixed arbitrarily from 0.2 to 0.9 for
each experiment. The arrival rate over the service
rate, (defined as) is the average number of tasks
in system. As por p become larger, the load of

ERAAY gaas HurbEd L5E

g 48 AFle 22l 2AEY dxElE

processor also becomes higher. If the generated
task set is not schedulable by the on-line
algorithm by Shih and Liu, it is rejected, and
regenerated.

Once task sets are generated and determined as
schedulable by the proposed on-line algorithm, it
is scheduled by the algorithm by Shih and Liu
and by the proposed algorithm OAR, and then
the weighted errors of all tasks are analyzed.
Figure 8.a, 8.b,8.c and 8.d depict the distributions
of weighted errors of the tasks in the task sets
for p= 1,2, p =02, 0.4, and arbitrary weights.
The x-axis represents the index of task ordered
by arriving times, and the y-axis their weighted
error. From the figures, we can easily note that
the proposed algorithm outperforms the algorithm
by Shih and Liu at the cost of manipulating the
list of intervals that are not reserved for
mandatory parts and calculating minimum of
maximum weighted error.

P OAx |
OBy Shilis |

50

Fig 8. a Distribution of weighted error when
p =1, p=02

45 e
WBy OAR
40 o © By Shih's
9]

35

30

Fig. 8 b Distribution of weighted error when
p =1, p=04

90

0 iBy O8R

8 .
o] OBy Shih's

70 © T

60 (o]

50 °

5 o °

40

O o0 o]

30 e}

20

10

-8y,

' e (.9
®.q0, -, ’n A]
(\ g ’\'\'U\s’\\"(NG T

0 30 100 150 200 250 300

Fig. 8 c¢ Distribution of weighted error when
p =2, p=02

9% BBy OAR
o 08y snins |

Fig. 8 d Distribution of weighted error when
p =2, p=04

Fig. 8 Distribution of weighted errors with four different
values of p and p.

|X By OAR |
b ‘OB) LB

Fig. 9 Distribution of weghted errors with four different
values of p and p.

Figure 9 depicts the weighted errors incurred
by the same task set as that in Figure 8.a.
Theoretically, the OAR has to produce smaller
errors than the LB does. However the simulation

1039

PFEAIEE]=FA] "99-6 Vol.24 No.6B

shows that they produce the almost same error
distribution as shown in the figure 9. This result
means that the distribution of processing times of
mandatory parts and weights directly influences
the distribution of error. The distribution of
weighted error may change if the distributions for
processing times of mandatory parts or weights
are assumed differently.

IV. Conclusion

We presented a fast on-line algorithm for
reducing largest weighted error where tasks have
arbitrary weights. We transformed the optimization
problem to a LP problem. With the help of
valuable properties, the proposed algorithm rules
out some tasks at the very beginning stage of
scheduling and reduces the number of tasks
actually to be scheduled. Without a great loss of
timing complexity, weighted errors could be
reduced significantly by the proposed algorithm.
The proposed on-line algorithm could be useful
for multimedia applications with QoS
requirements.

References

[1] JW.S.Liu, JK.Lin, WK.Shih, and A.C.Yu,
Algorithms for Scheduling Imprecise Computa-
tions, Foundation of Real-Time Computing
edited by A.M.Tilborg, Kluwer Academic
Pub., pp.203-249,1991.

[21 WXK.Shih, JW.SLiu, and J.Y.Chung, Fast
Algorithms for Scheduling Imprecise Computa-
tions, SIAM J. on Computing, vol.20, no.3,
July 1991.

[3] WXK.Shih, and JW.S.Liu, Algorithms for
Scheduling Imprecise Computations with
Timing Constraints to Minimize Maximum
Error, IEEE Tr. On Computers, vol.44, no.3,
March 1995.

[4] W.XK.Shih, and J.W.S.Liu, On-line Scheduling
of Imprecise Computations to Minimize Error,
Proc.of the 13th Real-Time Systems Sympos-
ium, Phoenix, Arizona, pp.280-289,December

1040

1992.

[51 K.Ho,JLeung and W.Wei, Minimizing Maxi-
mum Weighted Error for Imprecise Comput-
ation Tasks, J. Algorithms, Vol.16, pp.431-
452, 1994.

[6] J.A.Stankovic,M.Spuri,M.D.Natale, and G.
Buttazzo, Implication of Classical Scheduling
Results For Real-Time Systems, IEEE
Computers, Vol.28, No.6, pp.16-25, June 1995.

0| & &|(Chun-Hee Lee) A3

19643 29 : AlwAd)stn ofo]
gista) &4

19853 24 : AAfstw HAkst
3} A}

196813 39 ~199813 12 : A~
dFshadta 2 Az
SAG9T4 AT

19903 3Y~&A): ol uiistnl e} i}

34

&(Won Ryu) : A3

1983 24 : ydeishr AUREAI 24

19884 24 : A goistar st AbEAIR Mal

1998 84 : AiAchstal of3d AuFspa At
4 FE

1989 8~ : AFAAFAATH FAAAE
A7 AHF

<FEA Hol vlolEl AR, WA A2,

o) EHFH

£ 7| #(Ki-Hyun Song) A3

1985\3 24 : st w AALE
Az} 24

198714 24 : Sddistw AARE
AE=} Mt

1999 24 : o}figtnl A5E
383 whap

1990 3Y~A: HHRANE AGA v} 2w

S

<FHA Rl AAAE, oA

A izl HorbEd) 258 Hag 47)e el

=

%| & 3|(Kyung-Hee Choi) 234

197613 29 : Mg w AP S8k Z4

1979\d : =83~ 12}A% ENSEEIHT Z8hA}

1982y : =3}~ Paul Sabatier o -Z&Pa}Al

1982:d 3 ~3A): o} ;s A R AFeFTIE
a5

<FHA Bop AR, BAAAE, AATAA

&, T2y

& 7| #(Gyhyun Jung) 34
19841029 : A7Jehta A2} o)

1988 : University of Illinois, EECS 28}
1990%d : Purdue University -Z&h}Al

1992 3 ~3A) : ol efdta ARz w2
<FHY Hob HEntie], VLSI, A7 A

8} & THSeung-Kyu Park) 3|9
19743 29 gt 3o -S4} 29
19761d 2% : KIAST Ak} A}

1982'd 39 : 23k~ INP de Grenoble -Zhula}
19923 3 ~dA : o}t AR AFe| TR

e
<F ol AePIHolAAY, WA A, o
FA%H

1041

