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Analysis of MMPP/M/1 Queue with several homogeneous
two-state MMPP sources

Gyemin Lee*, Soohan Ahn**, Joongwoo Jeon** Regular Members

ABSTRACT

In this paper, we suggest a simple computational algorithm to obtain the queue length distribution in the finite

queue, where the input process consists of several homogeneous two-state Markov modulated Poisson processes.

With comparison to the conventional algorithm, our algorithm is more practical, in particular, when a large

number of input sources are loaded to the system.

I. Introduction

Integrated  service  communication  systems
usually have very complicated input streams. A
typical example is a statistical multiplexer, whose
input consists of a superposition of packetized
voice sou- rces together with data traffic™.

The number of packet arrivals in adjacent time
intervals can be highly correlated, which turns the
input process into a complex non-renewal process
and significantly affects queueing performance of
the system.

Thus, a great interest has recently arisen in the
modeling of the superposition of traffic streams
and in the analysis of the resulting queueing
model.

Within this framework, various input processes
have been studied. A particularly interesting point
process is a well-known Markov modulated

Poisson process (MMPP). It possesses an import-

ant property which makes it suitable for
approximation of complicated non-renewal proces-
ses. By using a multiple-state MMPP or a super-
position of several homogeneous two-state MMPP
as an arrival proc- ess, various computer and
communication systems have modeled, and then
solved by the matrix- geometric algorithm "I
or the folding algo- rithm ™,

However, these algorithms are computationally
intensive and impractical, especially when state

- space of the aggregated arrival process of several

homogeneous MMPP sources is large ?. This is
usually the case in communication networks since
we may expect to have a large number of source
being served by a single statistical multiplexer.
Thus, we study a simple computational algorithm
solving the queueing model, where the input
process consists of several homogeneous two-
state MMPP sources.

This paper is organized as follows. Section 2
present a simple algorithm to analyze the system
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loaded with a single two-state MMPP source. In
Section 3, we extend the proposed algorithm to
the sys tem where the input process consists of a
large number of homogeneous two-state MMPP
sources.

I. An two-state MMPP/M/1 Queue

In this section, we consider a single sever
queu- eing system where customers arrive in
accordance with a two-state MMPP. Upon arrival,
they can enter the system only if there are less
than K customers in the system. Service time
distribution is exponential with rate ..

Before analyzing the system, let us briefly
describe a two-state MMPP. It is a double ly
stochastic Poisson process, whose mean arrival
rate changes according to the state of a
underlying  two-state  Markov  process. The
generator of the underlying Markov process and
the mean arrival rate matrix shall be denoted by

—-a a A0

Q=
b —b

and A=[

0 4,

respectively. We easily observe that the stationary
vector § of the stocha stic matrix ¢ is equal to
(a+5) 7' (b,a) and the traffic intensity p of this
queueing system is equal to x7! 84e, where
e=(1,1D"

Now we derive the queue length distribution of
the system. Let X(9 and K¢ denote the queue
length and the state of the underlying Markov
process at time : Then the couplet (JX#),X(#)
is a two-dimensional Markov process with the
following infinitesimal generator

Q-—A—ul A

ul Q—ul)

where 1 is an identity matrix of order 2. Note
that @, is a matrix of size 2Kx2K. Our aim is
to find the following stationary joint distribution

Tin= i%Pr(J(t)=z’, X(D=mn)

for all ;=1,2, 0<n<K. For the sake of nota-
tional convenience, we set x=1 and write =,
=(my .7y, for all 0<u<K. Then it is well
known that ( x;,, 70)Q,=0 and

(1-2[ mp—2%" 7gA)’
= x2()[I+2Q—A—D+2°4] n

where 0=1(0,0) and x(2)= fjﬂ T2, To

solve the above equation, let us again define the
matrix @) =A+2Q—A—D+2% and its
determinant ¢(z). Since the determinant ¢(2)=
[1—2(a+ A+ D+ 2241+ [1—2(b6+ A+ 2%2,]

— abz?, we directly derive the follow- ing lemma.
See [3] for the details.

Lemma 1 The determinant ¢(z) of the matrix
?(z) has four positive roots, denoted by «,, a,,
8, and B, in order. If traffic intensity o is less
than one, the roots satisfy «,<a,(8,=1¢(8,.

Otherwise the roots satisfy ¢,<a,=1{8,<8,.

In similar way in [3] and [1], we can solve
the equation (1) through the matrix-geometric
algorithm. For this purpose, define the following
four matrices

0'10 ﬁl 0
V1= ’ V2=[ ]
0 @ 0 B
and
a, 8,
L1= » Ly=
a, B,

where a;, ay,, B, and B, are left eigen-
vectors of the matrix @(z) corresponding to four
roots a,, ay B8, and A Murthy et. al. proved
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that @, and @, are eigen-vecors of the minimal
solution of the following nonlinear matrix
equation:

A+RQ—A—-D+R*=0

and that o, and g, are eigenvalues of the
| Similarly 8,, 85, 7%
and pg;' are so with rtespect to I+ R(
Q—~A-D+R°A=(0. Thus both L, and L, are

minimal solution & in

invertible. Using these four matrices, we derives
the following theorem for the queue length
distribution.

Theorem 1 The queue length distribution is given
by

r,= w(I-V)VIL,

where ( wy, wg) is a left eigen-vector of

matrix

L,Q V'L @
A3)

L,Q VFL,Q

for a zero eigen-value and normalized so that
= wu(I-Vi"L e

+ we(I-VE DL, e @)

Proof) By the simple algebric manipulation, it is
easily shown that

LQ=(I-V)LLQ-A)+VIL,
0=A+V.L(Q-A-D+ViL,
VILQ=(-V)LA
+(I-VYVLAQ-D

for all ;=1,2. From this fact and the equation
(3), we easily know that ( x,, -, ny) defined
in (2) is a unique stationary vector of the
stochastic matrix @, So the proof is complete.
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The method presented here unifies the finite
and infinite queue system in a single frame work.
In order to see this, let us look at coefficient
vectors wy and w, defined in Theorem 1
when the queue size is infinite and traffic
intensity o is less than one. Since
aKaX1<B KBy VE'' goes to zero and VE'!
diverge as K—oo. Thus, in order to satisfy
normalization equation (3), the coefficient w
becomes to be a zero vector. This fact derives

that  w., = 6L!, which is equal to resuits in
3)

. Several two-state MMPP/M/1
Queue

In this section, we extend results in Section 2
to the system where customers arrive in
accordance with a superposition of several homo-
geneous two-state MMPP sources. To do this, let
vs first describe the input process. When m
homogeneous two-state MMPP sources with
parameters (Q, A) defined in Section 2 are
superposed, the generator of the underlying
Markov process and the mean arrival rate matrix
of the superposed process are given by

- ma ma

(m—Da —(m—Da—b

—a—(m—1)b a
mb —mb
and A ,,= diag(mh ,, (m— 1A, + A, -+, mAy).

It is also well known that the stationary vector
of the matrix Q,, is given as follows;

0=y ((7) 870" () 8%")
and that the traffic intensity o, of this system is

equal to mp, where o is defined in Section 2.
Now we derive queue length distribution. In
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similar way as we did in Section 2, write

7= lim Pr(X ()= m, (D=1,

1<i<m+1,0<n<K ‘and x,=(x(n1),
,min, m+1)), 0<n<K. Also we define,

(D= it 2 Q=4 p— D) +27

that is,
a2 maz
b (D) "
()= 2bz
“ d(2) az
mbz do(z).

where d(2)=kA |+ (m—RBA,—2[ka+A)
+(m—E)(b+4,)+1]+2% Using the fact that
k
m
the determinant ¢(z) of the matrix @(2) is given
by )

dl2)= dm(z)+—m—,z—kdo(z), we can show that

( )2
”ljo sz,

C (m=1)/2
d oy 2) "Ho si(2), if m is even

if m is odd
¢(z)=I

where 5,(2) = d (2)d ,,—(2) — (m—2k) *abz’.

From this fact, we derive the following lemma.

Lemma 2 The determinant ¢(z) has 2m positive
roots, denote by @« -,2, and g, 8, in
order. If traffic intensity o, of the system is less
than one, the réots satisfy o< <a,{(8,=1
{-+{B,. Otherwise, the roots satisfy a,¢(--¢
@ m=1B 1<K B

Proof) We easily observe that 4,(0)<0 and
dy(1)>0 for all k=0Q,1,--,m, so thatd(z)
d .—(2) has four positive roots x,{x1<x3<x .
It easily is shown that s,(1)=2k(m— kXa+ b)*.
Thus we know that s,(z) has four positive roots
satisfying v, <y, 1<ys{y, for all %+Q and that

so(z) has four positive root vy, v, vy and y,

satisfying »,< y,=1{y{ vy of ¥ <y Ky3;=1<y,.
Now, we shall prove that determinant ¢(2)
does not have multiple roots. If ¢, is a root of

si2), then s{tp)=(m—k—D(I—=RX[(Ay —2)
(4~ D+(a— )1 +dablt} - for  s#k  Thus
determinant ¢(z) has 2m distinct roots. So, the
proof is complete. v

Since d (2)d - (2) — (m—2k) *abz*=0 are poly-

nomial equation of order -4, we can easily derive

all roots of the determinant ¢(z). In similar way
in Section 2, define L, L, V,, and V, and

then derive wy, and. w ., satisfying -

(L,Q V#T'L,Q
(wg., wi) =

=
L,Q ViL,Q

and wi(U-VITDL et we(I-VED

L,e=1. Then the queue length distribution can
be obtained by equaiion (2) in Theorem 1. The
above procedure above does not requires to
compute inverse matrix as in [4] or to solve
nonlinear matrix equation as in [1]. Consequently,
it enables us to derive queue length distribution
with less amount of computational work.
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