Fuzzy closure spaces and fuzzy quasi-proximity spaces

Yong Chan Kim and Jong Wan Lee

Department of Mathematics, Kangnung National University

ABSTRACT

We will define a fuzzy quasi-proximity space and give some examples of it. We show that the family M(X, C) of all fuzzy quasi-proximities on X which induce C is nonempty. Moreover, we will study the relationship between the category of fuzzy closure spaces and that of fuzzy quasi-proximity spaces.

1. Introduction and Preliminaries

A.S. Mashhour and M.H. Ghanim [9] introduced fuzzy closure spaces as a generalization of closure spaces. On the other hand, A. Kandil and M.E. El-Shafee[4] introduced the concept of fuzzy proximity spaces and investigated some properties of them.

In this paper, we define a fuzzy quasi-proximity space in a sense of [4]. It is weaker than the definition of A.K. Katsaras and C.G. Petalas [6]. We give some examples of fuzzy quasi-proximity spaces. We show that the family M(X, C) of all fuzzy quasi-proximities on X which induce C is nonempty. Moreover, we study the relationship between the category of fuzzy closure spaces and that of fuzzy quasi-proximity spaces.

Throughout this paper, I denotes the unit interval. A member μ of I^X is called a fuzzy set. $\widetilde{0}$ and $\widetilde{1}$ denote constant fuzzy sets taking the values 0 and 1 on X, respectively. A fuzzy point x_t for $0 \le t \le 1$ is an element of I^X such that

$$x_t(y) = \begin{cases} t, & \text{if } y = x, \\ 0, & \text{if } y \neq x. \end{cases}$$

A fuzzy point $x_i \in \lambda$ iff $t \le \lambda(x)$. For λ , $\mu \in I^X$, the fuzzy set λ is *quasi-coincident* with μ , denoted by λq μ , if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. If λ is not quasi-coincident with μ , we denote $\lambda \overline{q}$ μ . All other notations and definitions are standard in fuzzy set theory.

Lemma 1.1 [4,8] For λ , μ , $\mu_i \in I^X$, we have the following properties.

- (1) If $\lambda q \mu$, then $\lambda \wedge \mu \neq \widetilde{0}$.
- (2) $\lambda \ \overline{q} \ \mu \ \text{iff } \lambda \leq \widetilde{1} \mu.$
- (3) $\lambda \leq \mu$ iff $x_t \neq \lambda$ implies $x_t \neq \mu$ iff $x_t \neq \mu$ implies $x_t \neq \lambda$.

(4) $x_i q \bigvee_{i \in \Gamma} \mu_i$ iff there exists $i_0 \in \Gamma$ such that $x_i q \mu_{i_0}$. (5) If $f : X \to Y$ is a function and $\lambda q \mu$, then $f(\lambda) q$ $f(\mu)$.

Definition 1.2 [2] A subset T of I^X is called a *fuzzy topology* on X if it satisfies the following conditions:

- (O1) $\tilde{0}$, $\tilde{1} \in T$.
- (O2) If $\mu_1, \mu_2 \in T$, then $\mu_1 \wedge \mu_2 \in T$.
- (O3) If $\mu_i \in T$ for each $i \in \Gamma$, then $\bigvee_{i \in \Gamma} \mu_i \in T$. The pair (X, T) is called a *fuzzy topological* space.

Let (X, T_1) and (Y, T_2) be fuzzy topological spaces. A function $f: (X, T_1) \to (Y, T_2)$ is called *fuzzy continuous* if $f^{-1}(\mu) \in T_1$ for all $\mu \in T_2$.

Definition 1.3 [9] A function $C: I^X \to I^X$ is called a *fuzzy closure operator* on X if it satisfies the following conditions:

- (C1) $C(0) = \tilde{0}$.
- (C2) $C(\lambda) \ge \lambda$, for all $\lambda \in I^X$.
- (C3) $C(\lambda \vee \mu) = C(\lambda) \vee C(\mu)$ for all $\lambda, \mu \in I^X$.

The pair (X, C) is called *fuzzy closure space*.

A fuzzy closure space (X, C) is called *topological* provided that

(C4)
$$C(C(\lambda)) = C(\lambda)$$
, for all $\lambda \in I^X$.

Let (X, C_1) and (Y, C_2) be fuzzy closure spaces. A function $f: (X, C_1) \to (Y, C_2)$ is called a *fuzzy closure map* (for short C-map) if $f(C_1(\lambda)) \leq C_2(f(\lambda))$, for all $\lambda \in f^X$.

Theorem 1.4 [8] Let (X, T) be a fuzzy topological space. We define an operator $C_T: I^X \to I^X$ as follows: for each $\lambda \subseteq I^X$,

$$C_{T}(\lambda) = \wedge \{\mu \mid \mu \geq \lambda, \ \widetilde{1} - \mu \in T\}.$$

Then (X, C_T) is a topological fuzzy closure space.

Theorem 1.5 [8] Let (X, C) be a fuzzy closure space. Define T_C on X by

$$T_C = \{\widetilde{1} - \lambda \mid C(\lambda) = \lambda\}.$$

Then:

- (1) T_C is a fuzzy topology on X.
- (2) $C = C_{T_C}$ iff (X, C) is topological.

2. Fuzzy quasi-proximity and fuzzy topological space

From the definition of A. Kandil *et al.*[4], we can define a fuzzy quasi-proximity.

Definition 2.1. A binary relation δ on I^X is said to be a *fuzzy quasi-proximity* on X if it satisfies the following conditions: for λ , μ , $\rho \in I^X$,

(FQP1) $(\tilde{0}, \tilde{1}) \notin \delta$ and $(\tilde{1}, \tilde{0}) \notin \delta$.

(FQP2) $(\lambda \lor \rho, \mu) \in \delta$ iff $(\lambda, \mu) \in \delta$ or $(\rho, \mu) \in \delta$ and $(\mu, \lambda \lor \rho) \in \delta$ iff $(\mu, \lambda) \in \delta$ or $(\mu, \rho) \in \delta$. (FQP3) If $(\lambda, \mu) \notin \delta$, then $\lambda \overline{g} \mu$.

The pair (X, δ) is called a *fuzzy quasi-proximity space*.

A fuzzy quasi-proximity space (X, δ) is called a *fuzzy* proximity space if it satisfies:

(FP) If
$$(\lambda, \mu) \in \delta$$
 for $\lambda, \mu \in I^X$, then $(\mu, \lambda) \in \delta$.

Let δ_1 and δ_2 be fuzzy quasi-proximities on X. We say δ_2 is finer than $\delta_1(\delta_1$ is *coarser* than δ_2) if $(\lambda, \mu) \in \delta_2$ implies $(\lambda, \mu) \in \delta_1$.

Remark 1. Let (X, δ) be a fuzzy quasi-proximity space.

- (1) If $(\lambda, \nu) \in \delta$ and $\lambda \leq \mu$, then, by (FQP2), we have $(\mu, \nu) \in \delta$.
- (2) We define a binary relation δ^1 on I^X if for any λ , $\mu \in I^X$, $(\lambda, \mu) \in \delta^1$ iff $(\mu, \lambda) \in \delta$. Then (X, δ^1) is a fuzzy quasi-proximity space.

Theorem 2.2 [4] Let (X, δ) be a fuzzy quasi-proximity space. For each $\lambda \in I^X$, we define operators C_{δ} , $C^* : I^X \to I^X$ as follows:

$$C_{\delta}(\lambda) = \bigwedge \{\widetilde{1} - \rho \mid (\rho, \lambda) \notin \delta\}.$$

and

$$xqC^*(\lambda)$$
 iff $(x_i, \lambda) \subseteq \delta$.

Then:

- (1) $C_{\delta} = C^*$.
- (2) (X, C_{δ}) is a fuzzy closure space.

Example 1. For any λ , $\mu \in I^X$, we define binary relations δ_0 and δ_1 on I^X by

$$(\lambda, \mu) \notin \delta_0 \text{ iff } \lambda = \widetilde{0} \text{ or } \mu = \widetilde{0}$$

and

$$(\lambda, \mu) \notin \delta_1 \text{ iff } \lambda \stackrel{-}{q} \mu.$$

Then δ_0 and δ_1 are fuzzy proximities on X.

We can obtain C_{δ_0} and C_{δ_1} from Theorem 2.2 as follows:

$$C_{\delta_0}(\lambda) = \begin{cases} \tilde{0}, & \text{if } \lambda = \tilde{0}, \\ \tilde{1}, & \text{otherwise} \end{cases}$$
 and $C_{\delta_1}(\lambda) = \lambda$.

From Theorem 1.5, $T_{C\delta_0} = \{\tilde{0}, \tilde{1}\}$ and $T_{C\delta_1} = I^X$ are fuzzy topologies on X.

Example 2. Let $X = \{x, y, z\}$ be a set. Define a binary relation δ on I^X as follows:

$$(\lambda, \mu) \notin \delta$$
 if $\lambda = \tilde{0}$ or $\mu = \tilde{0}$, if $\lambda \leq \chi_{\{x\}}$, $\mu \leq \chi_{\{y,z\}}$

where χ is a characteristic function. Then (X, δ) is a fuzzy quasi-proximity space from the followings:

(FQP1) and (FQP3) are immediate from the definition of δ .

(FQP2) Since $\lambda \vee \rho \leq \chi_{(p;z)}$ iff $\lambda \leq \chi_{(p;z)}$ and $\rho \leq \chi_{(p;z)}$, we have $(\mu, \lambda \vee \rho) \notin \delta$ iff $(\mu, \lambda) \notin \delta$ and $(\mu, \rho) \notin \delta$. Similarly, $(\lambda \vee \rho, \mu) \notin \delta$ iff $(\lambda, \mu) \notin \delta$ and $(\rho, \mu) \notin \delta$.

Since $(\chi_{(x)}, \chi_{(x,z)}) \notin \delta$, but $(\chi_{(x,z)}, \chi_{(x)}) \subseteq \delta$, then δ is not a fuzzy proximity on X. From Remark 1(2), δ^{-1} is defined as follows:

$$(\lambda, \mu) \notin \delta^{-1} \begin{cases} \text{if } \lambda = \tilde{0} \text{ or } \mu = \tilde{0} \\ \text{if } \lambda \leq \chi_{\{y,z\}}, & \mu \leq \chi_{\{x\}}. \end{cases}$$

We can obtain C_{δ} and $C_{\delta^{-1}}$ from Theorem 2.2 as follows:

$$C_{\delta}(\lambda) = \begin{cases} \tilde{0}, & \text{if } \lambda = \tilde{0}, \\ \chi_{\{y,z\}}, & \text{if } \tilde{0} \neq \lambda \leq \chi_{\{y,z\}}, \\ \tilde{1}, & \text{otherwise} \end{cases}$$

and

$$C_{\delta^{-1}}(\lambda) = \begin{cases} \tilde{0}, & \text{if } \lambda = \tilde{0}, \\ \chi_{\{x\}}, & \text{if } \tilde{0} \neq \lambda \leq \chi_{\{x\}}, \\ \tilde{1}, & \text{otherwise.} \end{cases}$$

From Theorem 1.5, $T_{C_{\delta}} = \{\tilde{0}, \tilde{1}, \chi_{\{x\}}\}$ and $T_{C_{\delta}-1} = \{\tilde{0}, \tilde{1}, \chi_{\{y,z\}}\}$.

Definition 2.3. Let δ be a fuzzy quasi-proximity and C a fuzzy closure operator on X. A fuzzy quasi-proximity δ on X is said to be *compatible* with C if $C_{\delta} = C$.

Let M(X, C) be the family of all fuzzy quasi-proximities on X compatible with a given fuzzy closure space (X, C).

Theorem 2.4. Let (X, C) be a fuzzy closure space. We define a binary relation δ_C on as follows: for λ , $\mu \in I^X$ $(\lambda, \mu) \in \delta_C$ iff $\lambda \neq C(\mu)$.

Then:

(1) $\delta_C \subseteq M(X, C)$.

(2) For any fuzzy quasi-proximity δ on X, δ_{c_δ} is finer than δ .

Proof. (1) First, we show that δ_C is a fuzzy quasi-proximity on X.

(FQP1) It is trivial.

(FQP2) We have it from the following:

 $(\mu, \lambda \vee \rho) \subseteq \delta_C \text{ iff } \mu \in C(\lambda \vee \rho)$

iff $\mu q C(\lambda)$ or $\mu q C(\rho)$ (by Lemma 1.1(4))

iff $(\mu, \lambda) \in \delta_C$ or $(\mu, \rho) \in \delta_C$.

Similarly, $(\mu \lor \lambda, \rho) \in \delta_{\mathcal{C}}$ iff $(\mu, \rho) \in \delta_{\mathcal{C}}$ or $(\mu, \lambda) \in \delta_{\mathcal{C}}$.

(FQP3) If $(\mu, \lambda) \notin \delta_c$, then $\mu \overline{q} C(\lambda)$. Hence $\mu \overline{q} \lambda$. Finally, since

$$x_{iq}C(\lambda) \Leftrightarrow (x_i, \lambda) \notin \delta_C$$

 $\Leftrightarrow x_{iq}C_{\delta_C}(\lambda),$

by Lemma 1.1 (3), we have $C = C_{\delta C}$.

(2) Since
$$C_{\delta}(\lambda) = \bigwedge \{ 1 - \rho \mid (\rho, \lambda) \notin \delta \}$$
, we have $(\mu, \lambda) \notin \delta \implies C_{\delta}(\lambda) \le 1 - \mu \implies \mu \overline{q} C_{\delta}(\lambda) \implies (\mu, \lambda) \notin \delta_{C_{\delta}}$

Hence $\delta_{C_{\delta}}$ is finer than δ .

Example 3. Let $X = \{x, y, z\}$ be a set. Define $C : I^X \to I^X$ as follows:

$$C(\lambda) = \begin{cases} \tilde{0}, & \text{if } \lambda = \tilde{0}, \\ \chi_{\{x,y\}}, & \text{if } \lambda = x_t, \\ \chi_{\{z\}}, & \text{if } \lambda = z_s, \\ \tilde{1}, & \text{otherwise.} \end{cases}$$

Then C is a fuzzy closure space such that $\widetilde{1} = C(C(x_t)) \neq C(x_t) = \chi_{\{x_t, y_t\}}$.

We obtain δ_C from Theorem 2.4 as follows:

$$(\lambda, \mu) \notin \delta_C$$
 if $\lambda = \tilde{0}$ or $\mu = \tilde{0}$, if $\lambda = z_s$, $\mu = x_t$, if $\lambda \leq \chi_{\{x,y\}}$, $\mu = z_s$.

From Theorem 2.2, we have

$$C_{\delta_C}(\lambda) = \begin{cases} \tilde{0}, & \text{if } \lambda = \tilde{0}, \\ \chi_{\{x,y\}}, & \text{if } \lambda = x_t, \\ \chi_{\{z\}}, & \text{if } \lambda = z_s, \\ \tilde{1}, & \text{otherwise.} \end{cases}$$

Hence $\delta_C \in M(X, C)$.

Example 4. Let N be a natural number set. Define a quasi-proximity δ on N by

$$(\lambda,\mu) \notin \delta \begin{cases} \text{if } \lambda = \tilde{0} \quad \text{or } \mu = \tilde{0}, \\ \text{if there exist nonempty finite subsets} \\ F_1, F_2 \text{ of N such that } \lambda \leq \chi_{F_1}, \mu \leq \chi_{F_2}. \end{cases}$$

If there exists a nonempty finite subset F of N such that $0 \neq \lambda \leq \chi_F$, then $C_\delta(\lambda) = \chi_{F_2}$, where F_2 is the minimal nonempty finite set satisfying $0 \neq \lambda \leq \chi_F$ from the following (A) and (B).

(A) For F_1 and F_2 are nonempty disjoint finite subsets of N and $0 \neq \mu \leq \chi_{F_1}$,

$$C_{\delta}(\lambda) = \wedge \{\widehat{1} - \mu | (\mu, \lambda) \notin \delta \}$$

$$= \wedge \{\widehat{1} - \chi_{F_1} \mid (\chi_{F_1}, \lambda) \notin \delta \}$$

$$= \wedge \{\chi_{F_1^c} \mid (\chi_{F_1}, \lambda) \notin \delta \}$$

$$\geq \chi_{F_2}.$$

(B) We will show that $C_{\delta}(\lambda) \leq \chi_{F_2}$. We only show that $x \notin F_2$ implies $C_{\delta}(\lambda) = 0$. For each $x \notin F_2$, we have $(\chi_{\{x\}}, \lambda) \notin \delta$. Hence $C_{\delta}(\lambda) \leq \chi_{\{x\}}c$. It implies $C_{\delta}(\lambda)(x) = 0$. We obtain

$$C_{\delta}(\lambda) = \begin{cases} \tilde{0}, & \text{if} \quad \lambda = \tilde{0}, \\ \chi_{F_2}, & \text{if there exists a nonempty finite} \\ & \text{set } F \text{ such that } \tilde{0} \neq \lambda \leq \chi_F \text{ and } F_2 \text{ is} \\ & \text{the minimal set satisfying } \tilde{0} \neq \lambda \leq \chi_F, \\ \tilde{1}, & \text{otherwise.} \end{cases}$$

Then $\delta_{C_{\delta}}$ is defined from Theorem 2.4 as follows:

$$(\lambda,\mu) \notin \delta_{C_{\widehat{\delta}}} \begin{cases} \text{if} & \lambda = \widetilde{0} \text{ or } \mu = \widetilde{0}, \\ \text{if there eixist a nonempty finite} \\ \text{subset } F \text{ such that } \lambda \leq \chi_{F^{C}}, \mu \leq \chi_{F^{C}} \end{cases}$$

For each F_1 and F_2 are nonempty disjoint finite

subsets of N such that

$$\tilde{0} \neq \lambda \leq \chi_{F_1}, \tilde{0} \neq \mu \leq \chi_{F_2}$$

 $(\lambda, \mu) \notin \delta$ implies $(\lambda, \mu) \notin \delta_{C\delta}$. On the other hand, $(\chi_{\{2\}^c}, \chi_{\{2\}}) \notin \delta_{C\delta}$ but $(\chi_{\{2\}^c}, \chi_{\{2\}}) \in \delta$. Hence $\delta_{C\delta}$ is strictly finer than δ .

Definition 2.5. Let (X, δ_1) and (Y, δ_2) be fuzzy quasi-proximity spaces. A function $f:(X, \delta_1) \to (Y, \delta_2)$ is a fuzzy quasi-proximity map (P-map for short) if $(f(\mu),$ $f(v) \in \delta_1$, for each $(\mu, v) \in \delta_1$.

Theorem 2.6. Let (X, δ_1) and (Y, δ_2) be fuzzy quasiproximity spaces. If $f:(X, \delta_1) \to (Y, \delta_2)$ is a P-map, then:

- (1) $f: (X, C_{\delta_1}) \rightarrow (Y, C_{\delta_2})$ is a C-map.
- (2) $C_{\delta_1}(f^{-1}(\mu)) \leq f^{-1}(C_{\delta_2}(\mu))$, for each $\mu \in I^Y$.
- $(3) f: (X, T_{C\delta_1}) \rightarrow (Y, T_{C\delta_2})$ is a fuzzy continuous map.

Proof. (1) Let $y_i q f(C_{\delta_1}(\lambda))$, that is, $f(C_{\delta_1}(\lambda))(y) +$ t > 1. Then there exists $x \in X$ with $x \in f^{-1}(\{y\})$ such that $f(C_{\delta_1}(\lambda))(y) + t \ge C_{\delta_1}(\lambda)(x) + t > 1$, that is, $x_i q C_{\delta_1}(\lambda)$. Since

$$x_{\mathcal{A}}C_{\delta_1}(\lambda) \Rightarrow (x_t, \lambda) \in \delta_1$$
(since f is a P-map,) $\Rightarrow (f(x_t), f(\lambda)) \in \delta_2$

$$\Rightarrow (f(x_t), = y_t)qC_{\delta_2}(f(\lambda)),$$

by Lemma 1.1(3), we have $f(C_{\delta_1}(\lambda)) \leq C_{\delta_2}(f(\lambda))$.

(2) Since

$$\forall x_{i}qC_{\delta_{1}}(f^{-1}(\mu)) \Rightarrow (x_{i}, f^{-1}(\mu)) \in \delta_{1}$$
(since f is a P-map and $f(f^{-1}(\mu)) \leq \mu$,)
$$\Rightarrow (f(x_{i}), \mu) \in \delta_{2}$$

$$\Rightarrow f(x)_{i}qC_{\delta_{2}}(\mu)$$

$$\Rightarrow x_{i}qf^{-1}(C_{\delta_{2}}(\mu)),$$

then $C_{\delta_1}(f^{-1}(\mu)) \le f^{-1}(C_{\delta_2}(\mu))$.

(3) If $\mu \in T_{(\delta_2)}$, by Theorem 1.5, we have $C_{\delta_2}(\widetilde{1} - \mu) =$ $1 - \mu$. From (2), we have

$$C_{\delta_1}(f^{-1}(\tilde{1}-\mu)) \leq f^{-1}(C_{\delta_2}(\tilde{1}-\mu)) = f^{-1}(\tilde{1}-\mu).$$

Since $f^{-1}(\tilde{1}-\mu) = \tilde{1}-f^{-1}(\mu)$, by (C2) of Definition 1.3, we have $C_{\delta_1}(\tilde{1}-f^{-1}(\mu)) = \tilde{1}-f^{-1}(\mu)$

$$C_{\delta_1}(1-f^{-1}(\mu)) = 1-f^{-1}(\mu)$$

Hence $f^{\dagger}(\mu) \in T_{C\delta_1}$.

Example 5. Let $X = \{x, y, z\}$ be a set. Define fuzzy quasi-proximities δ_1 and δ_2 on X as follows:

$$(\lambda,\mu) \notin \delta_1$$
 if $\lambda = \tilde{0}$ or $\mu = \tilde{0}$, if $\lambda \leq \chi_{\{x,y\}}$, $\mu = z_s$.

and

$$(\lambda,\mu) \notin \delta_2 \begin{cases} \text{if } \lambda = \tilde{0} \text{ or } \mu = \tilde{0}, \\ \text{if } \lambda = z_s, \ \mu = x_t, \\ \text{if } \lambda \leq \chi_{\{x,y\}}, \ \mu = z_s. \end{cases}$$

We can obtain C_{δ_1} and C_{δ_2} from Theorem 2.2 as follows:

$$C_{\delta_1}(\lambda) = \begin{cases} \tilde{0}, & \text{if } \lambda = \tilde{0}, \\ \chi_{\{z\}}, & \text{if } \lambda = z_s, \\ \tilde{1}, & \text{otherwise.} \end{cases}$$

$$C_{\delta_2}(\lambda) = \begin{cases} \tilde{0}, & \text{if } \lambda = \tilde{0}, \\ \chi_{\{x,y\}}, & \text{if } \lambda = x_t, \\ \chi_{\{z\}}, & \text{if } \lambda = z_s, \\ \tilde{1}, & \text{otherwise.} \end{cases}$$

The identity function $id_X: (X, \delta_1) \rightarrow (X, \delta_2)$ is not a Pmap because $(z_s, x_l) \in \delta_1$ but $(z_s, x_l) \notin \delta_2$. Since 1 = $C_{\delta_1}(x_i) \le C_{\delta_2}(x_i) = \chi_{\{x, y\}}, id_X$ is not a C-map. On the other hand, since $T_{C\delta_1} = T_{C\delta_2} = \{\tilde{0}, \tilde{1}, \chi_{\{x,y\}}\}$ from Theorem 1.5, $id_X: (X, T_{C\delta_1}) \rightarrow (Y, T_{C\delta_2})$ is fuzzy continuous.

Example 6. Let N be a natural number set. Define δ_1 and δ_2 as follows:

$$(\lambda,\mu) \notin \delta_1 \begin{cases} \text{if } \lambda = \hat{0} \quad \text{or } \mu = \hat{0}, \\ \text{if there exist nonempty finite subsets} \\ F_1, F_2 \text{ of } N \text{ such that } \lambda \leq \chi_{F_1}, \mu \leq \chi_{F_2}. \end{cases}$$

$$(\lambda,\mu) \neq \delta_2$$
 if $\lambda = 0$ or $\mu = 0$, if there exist nonempty finite subsets F such that $\lambda \leq \chi_{F^c}, \mu \leq \chi_{F^c}$.

From Example 4, we obtain $C_{\delta_1} = C_{\delta_2}$ as follows:

$$C_{\delta 1}(\lambda) = \begin{cases} \tilde{0}, & \text{if } \lambda = \tilde{0}, \\ \chi_{F_2}, & \text{if there exists a nonempty finite} \\ & \text{set } F \text{ such that } \tilde{0} \neq \lambda \leq \chi_F \text{ and } F_2 \text{ is} \\ & \text{the minimal set satisfying } \tilde{0} \neq \lambda \leq \chi_F \end{cases}$$

Hence $T_{C\delta_1} = T_{C\delta_2}$. The identity function id_N : (N, δ_1) $\rightarrow (N, \delta_2)$ is not a P-map. But $id_N: (N, T_{C\delta_1}) \rightarrow (N, T_{C\delta_2})$

is fuzzy continuous and $id_N: (N, {}_{C\delta_1}) \rightarrow (N, {}_{C\delta_2})$ is a C-map. \square

Let **FC** be the category of fuzzy closure spaces and C-maps and **FQProx** the category of fuzzy quasi-proximity spaces and P-maps. From Theorem 2.5, we can prove the following theorem.

Theorem 2.6. Define $F : \mathbf{FQProx} \to \mathbf{FC}$ by $F(X, \delta) = (X, C_{\delta})$ and F(f) = f. Then F is a functor.

Theorem 2.7. Define $G: \mathbf{FC} \rightarrow \mathbf{FQProx}$ by $G(X, C) = (X, \delta_C)$ and G(f) = f. Then G is a functor.

Proof. Let (X, C) be a fuzzy closure space. From Theorem 2.4, (X, δ_C) is a fuzzy quasi-proximity space. If $f: (X, C_1) \rightarrow (Y, C_2)$ is a C-map, then $f: (X, \delta_{C_1}) \rightarrow (Y, \delta_{C_2})$ is a P-map from the following:

$$(\lambda, \mu) \in \delta_{C_1} \Rightarrow \lambda q C_1(\mu)$$

$$\Rightarrow f(\lambda)q f(C_1(\mu)) \quad \text{(by Lemma 1.1(5))}$$

$$\Rightarrow f(\lambda)q C_2(f(\mu))$$

$$(\text{because } f(C_1(\mu)) \le C_2(f(\mu)))$$

$$\Rightarrow (f(\lambda), f(\mu)) \in \delta_{C_2}. \quad \Box$$

Theorem 2.8. A functor $G : FC \rightarrow FQProx$ is a left adjoint of the functor F.

Proof. Let $(X, C) \in \mathbf{FC}$. Since $F \circ G(C) = C_{\delta_C} = C$ from Theorem 2.4, the identity map $id_X : (X, C) \to (X, F \circ G(C))$ is a C-map. For each (Y, δ) and each C-map $f: (X, C) \to F(Y, \delta)$ in **FC**, by Theorem 2.7, $G(f): G(X, C) \to G \circ F(Y, \delta)$ is a P-map, that is, $f: (X, \delta_C) \to (Y, \delta_{C\delta})$ is a P-map. Since $\delta_{C\delta}$ is finer than δ from Theorem 2.4, $id_Y: (Y, \delta_{C\delta}) \to (Y, \delta)$ is a P-map. Hence $f: (X, \delta_C) \to (Y, \delta)$ is a P-map with $f = F(f) \circ id_X$. Therefore id_X is a F-universal map for (X, C). \square

References

[1] J. Adamek, H. Herrlich and G. E. Strecker, Abstract

- and Concrete Categories, John Wiley and Sons, Inc., 1990.
- [2] C. L. Chang, "Fuzzy topological spaces", J. Math. Anal. Appl., 24, 182-189, 1968.
- [3] M. H. Ghanim and F. S. Al-Sirehy, "Topological modification of fuzzy closure spaces", Fuzzy sets and Systems, 27, 211-215, 1988.
- [4] A. Kandil and M. E. El-Shafee, "Regularity axioms in fuzzy topological spaces and FR_T-proximities", Fuzzy sets and Systems, 27, 217-231, 1988.
- [5] A. K. Katsaras, "On fuzzy proximity spaces", J. Math. Anal. Appl., 75, 571-583, 1980.
- [6] A. K. Katsaras and C. G. Petalas, "Fuzzy quasi-proximities and fuzzy quasi-uniformities", Fuzzy sets and Systems, 27, 335-343, 1988.
- [7] M. Khare, "A relationship between classical and fuzzy proximities", Fuzzy sets and Systems, 90, 55-59, 1997.
- [8] Liu Ying-Ming and Luo Mao-Kang, Fuzzy topology, World Scientific Publishing, 1997.
- [9] A. S. Mashhour and M. H. Ghanim, "Fuzzy closure spaces", J. Math. Anal. Appl., 106, 154-170, 1985.

김 용 찬 (Yong Chan Kim)

1982년 : 연세대학교 수학과(이학사) 1984년 : 연세대학교 대학원 수학과 (이학석사)

1991년 : 연세대학교 대학원 수학과 (이학박사)

1991년 9월 ~현재 : 강릉 대학교 자연 과학대학 수학과 부교수

관심분야: Fuzzy Topology

이 종 완 (Jong Wan Lee)

1987년 : 청주사범대학교 수학교육과 (이학사)

1999년 : 강릉대학교 교육대학원 (교육학 석사)

현재 : 강릉 문성 고등학교 교사 관심분야 : Fuzzy Topology, 수학교육