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Fuzzy closure spaces and fuzzy quasi-proximity spaces
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ABSTRACT

We will define a fuzzy quasi-proximity space and give some examples of it. We show that the family M(X,
C) of all fuzzy quasi-proximities on X which induce C is nonempty. Moreover, we will study the relationship
between the category of fuzzy closure spaces and that of fuzzy quasi-proximity spaces.

1. Introduction and Preliminaries

A.S. Mashhour and M.H. Ghanim [9] introduced
fuzzy closure spaces as a generalization of closure
spaces. On the other hand, A. Kandil and M.E. El-
Shafee[4] introduced the concept of fuzzy proximity
spaces and investigated some properties of them.

In this paper, we define a fuzzy quasi-proximity space
in a sense of [4]. It is weaker than the definition of A.K.
Katsaras and C.G. Petalas [6]. We give some examples
of fuzzy quasi-proximity spaces. We show that the
family M(X, C) of all fuzzy quasi-proximities on X
which induce C is nonempty. Moreover, we study the
relationship between the category of fuzzy closure
spaces and that of fuzzy quasi-proximity spaces.

Throughout this paper, I denotes the unit interval. A
member p of /¥ is called a fuzzy set. 0 and 1 denote
constant fuzzy sets taking the values 0 and | on X,
respectively. A fuzzy point x, for 0<¢t=1 is an element
of /¥ such that

x () = {to

A fuzzy pointx, € Aiff t < Ax). For A, u € F, the
fuzzy set A is quasi-coincident with p, denoted by A4 ¢
U, if there exists x € X such that A(x) + u(x) > 1. If 1 is
not quasi-coincident with g, we denote A ¢ y. All other
notations and definitions are standard in fuzzy set
theory.

if y=x,
if y#x.

Lemma 1.1 [4,8]
following properties.

() If A g p then AA pu # 0.

@ AGu iffA<1-p

(3) A= iff x, ¢ Aimplies x,q p iff x, g y implies x,
q A

For A, u, 1, € 7Y, we have the
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) x,.q \/ u; iff there exists iy & I'such thatx,q ;.
S If f X—Y is a function and 4 g g, then AA) g
Aw.

Definition 1.2 [2] A subset 7 of F¥is called a fiizzy
topology on X if it satisfies the following conditions:

©OHo,1ET

O02) If wy, o e T, then yy N & T

(03) If wET for each i<T, then \/ y,E T

The pair (X, T) is called a fuzzy topologlcal space.

Let (X, T)) and (¥, T») be fuzzy topological spaces. A
function f: (X, 1) = (Y, T») is called fizzzy continuous
if [WET, for all yET.

Definition 1.3 [9] A function C:/X— Fiscalleda
fuzzy closure operator on X if it satisfies the following
conditions:_

(C1) C(0)=0.

(C2) C(Ay=A, for all AS.

(C3) CAV L) = AV ) for all A, uEF,

The pair (X, C) is called fuzzy closure space.

A fuzzy closure space (X, C) is called topological
provided that
(C4) C(C(A)=C(A), for all ASF.

Let (X, () and(Y, () be fuzzy closure spaces. A
function f': (X, C)) = (¥ C,) is called a fuzzy closure
map (for short C-map) if AC(A) < Cy(fA)), for all
€ K

Theorem 1.4 [8] Let (X T) be a fuzzy topological
space. We define an operator Cr: ¥ — ¥ as follows: for
each AEF,

Cy=Aplp =2 T-pe 1.
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Then (X, C7) is a topological fuzzy closure space.

Theorem 1.5 [8] Let (X, C) be a tuzzy closure
space. Define 7o on X by
Te={T-A1 QA= A}
Then:
(1) T, is a fuzzy topology on X.
(2) C = G iff (X, O) is topological.

2. Fuzzy quasi-proximity and fuzzy
topological space

From the definition of A. Kandil er «l.[4], we can
define a fuzzy quasi-proximity.

Definition 2.1. A binary relation § on /¥ is said to
be a fuzzy quasi-proximity on X if it satisfies the
following conditions: for A, 4, p & F,

(FQP1) (0,1)¢ & and (1,0)¢ 8.

(FQP)) (AVp, ) € S iff (A, WESor (p, )ESand

(U, AVpYES iff (u, HES or (U, pPEIS.

(FQP3) If (A, )¢ & then A 7 L.

The pair (X, 6) is called a fuzzy quasi-proximity space.

A fuzzy quasi-proximity space (X, 9) is called a fizzy
proximity space if it satisfies:

(FP) If (A, )€ for A, u< /Y, then (4, HES.

Let & and 6, be fuzzy quasi-proximities on X. We say
&, is finer than (&, is coarser than &) if (A, WES
implies (A, H)E§,.

Remark 1. Let (X, d) be a fuzzy quasi-proximity
space.

(D If (A4, vES and A=<y, then, by (FQP2), we have
u, VEL.

(2) We define a binary relation &' on /¥ if for any A,
UEF, (A, ES! iff (u, S 8. Then (X, §) is a fuzzy
quasi-proximity space.

Theorem 2.2 [4] Let (X, 8 be a fuzzy quasi-
proximity space. For each A € F, we define operators
Cs, C* : F'— ¥ as follows:

CdA) = A{L —pl(p Me d).
and
xgqC*A) iff (x, HES.

Then:

(1) Cs = C*.

(2) (X, Cs) is a fuzzy closure space.

Example 1. For any A, 4 & I¥, we define binary
relations & and & on X by

()L,y)ea,iff/l=50ru:6

and 3

A we & iff A g u

Then & and &, are fuzzy proximities on X.

We can obtain Cy, and Cj from Theorem 2.2 as
follows:

Gs (A)={.°’ it A=0. and G (H)=4

0 1, otherwise !

From Theorem 1.5, Tp5,= {0,1} and Tp5=F" are

fuzzy topologies on X. J

Example 2. Let X = {x, y, z} be a set. Define a binary
relation & on /¥ as follows:

if A=0 or p=0
A e 5{f '
( 'u) if 7"-<-X{x}’ ”SX{y,:}

where ¥ is a characteristic function. Then (X, J) is a
fuzzy quasi-proximity space from the followings:

(FOQP1) and (FQP3) are immediate from the
definition of &.

(FQP2) Since AVp<y, ., iff A<y, . and p<
X 2 We have (, AVp)e §iff (1, He 6 and (1,
p)g 8 Similarly, AVp, wye & iff (4, w¢ & and

(o, e o
Since (Ko X ) € 5, but (X, -y, X)) E 6, then §is
not a fuzzy proximity on X. From Remark 1(2), §' is
defined as follows:
if A=0 or p=0
Ae &
(4, 1) {1f MSX(pzp MSX,.

We can obtain Cs and Cz from Theorem 2.2 as
follows:

0, if  A=0,
Cs(A) = Xiy=p i 0£ASxy, 4,

1, otherwise

and

0, if  A=0,
ConlH) = Xy if 0#A<7,,y

I, otherwise.

From Theorem 1.5, T¢y= {6,I,x{x}} and Tz =
{0, I’X{y.z} b U
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Definition 2.3. Let & be a fuzzy quasi-proximity
and C a fuzzy closure operator on X. A fuzzy quasi-
proximity é on X is said to be compatible with C if
C5 =C.

Let M(X, O) be the family of all fuzzy quasi-
proximities on X compatible with a given fuzzy closure

space (X, ().

Theorem2.4. Let (X, C)be a fuzzy closure space. We
define a binary relation &- on as follows: for 4, ySF
(4, WES iff 1g C(w).

Then:

(1) s EMX, O).

(2) For any fuzzy quasi-proximity é on X, & is finer
than &.

Proof. (1) First, we show that & is a fuzzy quasi-
proximity on X.
(FQP1) 1t is trivial.
(FQP2) We have it from the following:
(U, AVPYES iff ug AV p)
iff g C(A) or uq C(p) (by Lemma 1.1(4))
iff (1, VES: or (1, PYES.
Similarly, (uV A, p)E6- iff (W PE or (u, V)
E 6.
(FQP3) If (u, )& &, then ug C(A). Hence tq A
Finally, since
xqgCA) & (x, Ve d-
& GG A,
by Lemma 1.1 (3), we have C = G..
(2) Since Cs(A) = N{l ~p|(p, A& 8, we have
U Hgd = CAH<1-p
= ng C{A
= (U D E by
Hence & is finer than 8. [

Example 3. Let X = {x, y, z} be a set. Define C : I
—/ as follows:
0. if A=0,
Xowyp i A=x,
X{Z}’ if A’:ZS’

1,

CA) =

otherwise.

Then C is a fuzzy closure space such that
1 = C(C(xt))i C(xf) = x{x, i
We obtain 8. from Theorem 2.4 as follows:
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(A.p) ¢ 641t
if ASx(,p M=2Z,

From Theorem 2.2, we have

0, if A=0,
Xixap if A=x,
Xy if A=z,
1

C(sc(/l) =

otherwise.

>

Hence §- € MX, C). J
Example 4. Let N be a natural number set. Define a
quasi-proximity § on N by

if A=0 or p=0,
if there exist nonempty finite subsets
F{,F, of N such that kaFl,p.Ssz.

(Auye

If there exists a nonempty finite subset F* of N such
that 0 # A<y then C{A) = xr, where F, is the
minimal nonempty finite set satisfying 0 # A< y;. from
the following (A) and (B).

(A) For F, and F; are nonempty disjoint finite subsets
of Nand 0 # u<pyp,

CA) = N1~y e 6}

=A{ =0 | (tr, ) 2 8}
= /\{XFC] ‘ O{Fls l) & 5}
= Xr

(B) We will show that Cy(A) < yr,. We only show that
x & F, implies C{A) = 0. For each x ¢ F, we have (¥,
Ay e 0. Hence C{A)=< yc. It implies Cy(A)(x) = 0.

We obtain

0, if A=0,
XF, if there exists a nonempty finite

GA)= set F such that 6¢XSXF and F, is

the minimal set satisfying bikaF,

1
Then & is defined from Theorem 2.4 as follows:

otherwise.

if  A=0 or p=0,
(Ap)e 8 < if there eixist a nonempty finite
5 subset F such that kaFC,quF.

For each F, and F, are nonempty disjoint finite
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subsets of N such that
Oat/lsZFl,O;tussz,

(4, gy e & implies (A, p) & &5 On the other hand,
(tars Xi2) € 8cs but (Yo, X2)) € 6. Hence &5 is
strictly finer than 4. U]

Definition 2.5. Let (X, &) and (¥, &) be fuzzy
quasi-proximity spaces. A functionf: (X, §)— (¥, &)
is a fuzzy quasi-proximity map (P-map for short) if (f{1),
AVNES, for each (u, VES,.

Theorem 2.6. Let (X, 8,) and (¥, &) be fuzzy quasi-
proximity spaces. If f: (X, §)— (Y, &) is a P-map,
then:

(1) f: (X. C5)— (% Cs,) is a C-map.

Q) Cs (' W)=/"NCs1)), for each pEl"

B f: X, T(~5I) — (¥, T(~52) is a fuzzy continuous map.

Proof. (1) Let y,qf(Cs(A), that is, ACs (D)) +
t> 1. Then there exists x€.X with x&-}({y}) such that
F(Cs(AN) + 12 Cs (Ax) + 1> 1, that is, x4Cs (A).
Since
xqG (A = (x, H E §
(since fis a P-map,) = (x,), A)ES,
= (fix), = )/t)qCSZ(/‘(}“)),
by Lemma 1.1(3), we have G (A))=G,({A).
(2) Since
VxqG (') = &, f)ES
{since fis a P-map and fif '(W)<u,)
= (fix), WES
= 049G 1)
= xqf MG AL,
then G (/' (W) </"G ). _
_ (3 If uE T, by Theorem 1.5, we have G (1 -1) =
1 — . From (2), we have

G, (1=)$f MG (1-p0) = £ (T-p.

Since £1(1-p) = 1=/ (1), by (C2) of Definition
1.3, we have

G (1= ) = T/
Hence f{(WET,,. O

Example 5. Let X= {x, y, z} be a set. Define fuzzy
quasi-proximities & and & on X as follows:

ifA=0or =0,

(i) 6l{if}»§x{m, p=z,
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and

if =0 or /.t=6,
(Ape 84 if A=z, g=x,
fASK iy H=2

We can obtain Cs, and Cs from Theorem 2.2 as
follows:

0, if A=0,
Ca](/l): Xizpif A=z,
i, otherwise.
and
0, if =0,
Jif A=x,
Cs, (M) = Koy !
Xipif A=z,
i, otherwise.

The identity function idy : (X, &)—(X, &) is not a P-
map because (z,, x) € but (z, x)& &, Since 1=
Csf(x) % Co(x) = Xx 3> idy 15 not a C-map. On the
other hand, since Teg=Tes =10, LY s } from
Theorem 1.5, idy: (X, Tcs) (Y, Tcs) is fuzzy
continuous. [

Example 6. Let NV be a natural number set. Define
6, and & as follows:

if A=0 or ;1=6,
(Ape 8, if there exist nonempty finite subsets
F|,F, of N such that XSXF],/JSXFZ.

it A=0 or §=0,
(A1) ¢ 8,1 if there exist nonempty finite subsets
F such that ASype, WX

From Example 4, we obtain G5,= G, as follows:
0, if A=0,
XFZ’ if there exists a nonempty finite

G (A= set F such that 6¢kaF and F, is

the minimal set satisfying b#leF

1, otherwise.

Hence Tc; = T, The identity function idy: (N, &)
—(N, &) is not a P-map. Butidy: (N, Tes )WV, Tes,)
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is fuzzy continuous and idy: (V, ¢s, =N, (52) is a C-
map. [

Let FC be the category of fuzzy closure spaces and
C-maps and FQProx the category of fuzzy quasi-
proximity spaces and P-maps. From Theorem 2.5, we
can prove the following theorem.

Theorem 2.6. Define F': FQProx — FC by
FIX, 9=(X, Cy) and F(f)=f.
Then F is a functor.

Theorem 2.7. Define G: FC—>FQProx by
G, O)=(X, &) and G(f)=/.
Then G is a functor.

Proof. Let (X, C) be a fuzzy closure space. From
Theorem 2.4, (X, &) is a fuzzy quasi-proximity space.
Iff: (X, C)— (Y, C,)is a C-map, thenf: (X, 6.)—(%,
&) is a P-map from the following:

(A WES, = Aq Ci()

= ADg AC(1)
= ADaCAw))

(because AC, ()= C(f(1)))

= (AA), AUNE 8

(by Lemma 1.1(5))

4

Theorem 2.8. A functor G : FC — FQProx is a
left adjoint of the functor F.

Proof. Let (X, O)&FC. Since F o G(C)=Cs.=C
from Theorem 2.4, the identity map idy: (X, O— (X, F
o (0)) is a C-map. For each (¥, 8) and each C-map
[ (X, O—FY, 8§ in FC, by Theorem 2.7, G(f) : G(X,
C)—G © F(Y, §) is a P-map, that is, /: (X, 8)—(Y, &5
is a P-map. Since J; is finer than & from Theorem 2.4,
idy: (Y, &5 = (¥, 8) is a P-map. Hence f: (X, §)—(¥,
0) is a P-map with /= F(f) © idy. Therefore idy is a F-
universal map for (X, €). [
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