Fuzzy quasi-uniform bases

Yong Chan Kim and Young Sun Kim*

Department of Mathematics, Kangnung National University *Department of Applied Mathematics, Pai Chai University

ABSTRACT

We will define a base of a fuzzy (quasi-)uniform space and investigate some properties of bases. In particular, for the family $\{\beta_i\}_{i\in\Gamma}$ of fuzzy (quasi-)uniform bases on X, there exists the coarsest fuzzy (quasi-)uniformity on X which is finer than fuzzy (quasi-)uniformity Φ_{β_i} generated by β_i for each $i\in\Gamma$.

1. Introduction and preliminaries

R. Badard *et al.* [1] introduced the gradation of entourages called smooth fuzzy preuniform structure. Moreover, S.K. Samanta [6] defined the fuzzy uniformity as a generalization of that of B. Hutton [3].

In this paper, we define the fuzzy uniformity in a somewhat different view of S.K. Samanta [6]. Moreover, we will define a base of a fuzzy (quasi-) uniform space and investigate some properties of bases. In particular, for the family $\{\beta_i\}_{i\in\Gamma}$ of fuzzy (quasi-) uniform bases on X, there exists the coarsest fuzzy (quasi-)uniformity on X which is finer than fuzzy (quasi-)uniformity Φ_{β_i} generated by β_i for each $i\in\Gamma$. Throughout this paper, all the notations and the definitions are standard in fuzzy set theory.

Let Ω_X denote the family of all functions $U: I^X \to I^X$ with the following properties:

- (1) $U(\tilde{0}) = \tilde{0}, \ \mu \leq U(\mu), \text{ for every } \mu \in I^X$
- (2) $U(\vee_{i\in\Gamma}\mu_i) = \bigvee_{i\in\Gamma} U(\mu_i)$, for $\{\mu_i\}_{i\in\Gamma} \subset I^X$.

For U, $V \in \Omega_X$, we define, for all $\mu \in I^X$,

$$U^{-1}(\mu) = \wedge \{ \rho \mid U(\widetilde{1} - \rho) \leq \widetilde{1} - \mu \},$$

$$(U \sqcap V)(\mu) = \wedge \{ U(\mu_1) \vee V(\mu_2) \mid \mu_1 \vee \mu_2 = \mu \},$$

$$U \vdash V(\mu) = U(V(\mu)).$$

Then $U \sqcap V$, $U \circ V$ and $U^{-1} \in \Omega_X$ from Lemma 2 of [3].

For every U, $V \in \Omega_X$, we define $U \le V$ iff $U(\mu) \le V(\mu)$ for each $\mu \in I^X$.

Lemma 1.1. [5] For every U, V, W, U_1 , $V_1 \in \Omega_X$, the following properties hold:

- (1) If $U \le U_1$ and $V \le V_1$, then $U \cap V \le U_1 \cap V_1$.
- (2) $U \sqcap V \leq U$, $U \sqcap V \leq V$ and $U \sqcap U = U$.
- (3) $(U^{-1})^{-1}=U$.
- (4) $U \le V$ iff $U^{-1} \le V^{-1}$.
- (5) Let a function $U_1: I^X \rightarrow I^X$ be defined by

$$U_{\tilde{1}}(\mu) = \begin{cases} \tilde{1} & \text{if } \mu \neq \tilde{0}, \\ \tilde{0} & \text{if } \mu = \tilde{0}. \end{cases}$$

Then $U_{\bar{1}} = U_{\bar{1}}^{-1} \subseteq \Omega_X$ and $U \sqcap U_{\bar{1}} = U$.

- (6) $(V \circ U)^{-1} = U^{-1} \circ V^{-1}$.
- (7) $(U \sqcap V)^{-1} = U^{-1} \sqcap V^{-1}$.
- (8) $(U \sqcap V) \sqcap W = U \sqcap (V \sqcap W)$.

We define the fuzzy (quasi-)uniformity in which the conditions (FQU3) and (FU) are defined in a somewhat different view of S.K. Samanta [6].

Definition 1.2. A function $\Phi: \Omega_X \rightarrow I$ is said to be a *fuzzy quasi-uniformity* on X if it satisfies the following conditions:

(FQU1) for $U, V \in \Omega_X$, we have $\Phi(U \sqcap V) \ge \Phi(U) \land \Phi(V)$,

(FQU2) if $V \le U$, then $\Phi(V) \le \Phi(U)$, (FQU3) for $U \in \Omega_X$, we have $\sup \{\Phi(V) \mid V \circ V \le U\}$ $\ge \Phi(U)$,

(FQU4) there exists $U \in \Omega_X$ such that $\Phi(U)=1$.

The pair(X, Φ) is said to be a *fuzzy quasi-uniform space*. A fuzzy quasi-uniform space (X, Φ) is called a *fuzzy uniform space* if (FU) for $U \subseteq \Omega_X$, we have sup $\{\Phi(V) \mid V \le U^1\} \ge \Phi(U)$.

In the above definition, (FQU3) and (FU) are defined in the sense of R. Badard *et. al*[1].

Let Φ_1 and Φ_2 be fuzzy (quasi-)uniformities on X. Φ_1 is finer than Φ_2 (or Φ_2 is *coarser* than Φ_1), denoted by $\Phi_2 \leq \Phi_1$, iff for any $U \in \Omega_X$, $\Phi_2(U) \leq \Phi_1(U)$.

Remark 1. (1) The definition of S.K. Samanta [6] is that of our sense.

- (2) Let (X, Φ) be a fuzzy (quasi-)uniform space. By (FQU1), (FQU2) and Lemma 1.1 (2), we have $\Phi(U \sqcap I)$ $V = \Phi(U) \wedge \Phi(V)$.
- (3) Let (X, Φ) be a fuzzy (quasi-)uniform space. By Lemma 1.1 (5) and (FQU4), since $U \le U_1$ for all $U \in$ Ω_X , we have $\Phi(U_1)=1$.
- (4) If (X, Φ) is a fuzzy uniform space, then, by (FU) and (FQU3), we have $\sup \{\Phi(V) \mid V \leq U^{-1}\} = \Phi(U^{-1})$. From Lemma 1.1(3), we have $\Phi(U^{-1})=\Phi(U)$.

2. Fuzzy quasi-uniform base

Definition 2.1. Let Θ_X be a subset of Ω_X . A function $\beta: \mathcal{O}_X \rightarrow I$ is said to be a base for a fuzzy quasiuniformity on X if it satisfies the following conditions: (FQB1) $\beta(U_1 \sqcap U_2) \ge \beta(U_1) \land \beta(U_2)$,

(FQB2) for $U \subseteq \Theta_X$, we have $\sup \{\beta(V) \mid V \circ V \leq U\}$ $\geq \beta(U)$,

(FQB3) there exists $U \in \Theta_X$ such that $\beta(U)=1$. The pair (X, β) is called a fuzzy quasi-uniform base.

A fuzzy quasi-uniform base (X, β) is called a fuzzy uniform base if

(FB) for $U \in \Theta_X$, we have $\sup \{\beta(V) \mid V \leq U^{-1}\} \geq$ $\beta(U)$.

Remark 2. Every fuzzy (quasi-)uniform space (X, Φ) is a fuzzy (quasi-)uniform base in the sense of $\Theta_X = \Omega_X$.

A fuzzy (quasi-)uniform base β always generates a fuzzy (quasi-)uniformity Φ_{β} on X in following theorem.

Theorem 2.2. Let (X, β) a fuzzy (quasi-)uniform base. Define, for every $U \subseteq \Omega_X$,

$$\Phi_{\beta}(U) = \begin{cases} \sup\{\beta V | V \le U\} & \text{if } \{V \in \Theta_{X} | V \le U\} \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

Then Φ_{β} is a fuzzy (quasi-)uniformity on X.

Proof. (FQU1) For any U_1 , $U_2 \in \Omega_X$, we will show that

$$\Phi_{\beta}(U_1 \sqcap U_2) \geq \Phi_{\beta}(U_1) \wedge \Phi_{\beta}(U_2).$$

If $\Phi_{\beta}(U_1)=0$ or $\Phi_{\beta}(U_2)=0$, it is trivial.

If $\Phi_{\beta}(U_1) \neq 0$ and $\Phi_{\beta}(U_2) \neq 0$, for ε such that $\Phi_{\beta}(U_1)$ $\wedge \Phi_{\beta}(U_2) > \varepsilon > 0$, there exist $V_1, V_2 \subseteq \Theta_X$ such that $\beta(V_1) \geq \Phi_{\beta}(U_1) - \varepsilon, \ V_1 \leq U_1,$

 $\beta(V_2) \ge \Phi_{\beta}(U_2) - \varepsilon$, $V_2 \le U_2$.

Since $V_1 \sqcap V_2 \leq U_1 \sqcap U_2$, we have

$$\Phi_{\beta}(U_1 \sqcap U_2) \geq \beta(V_1 \sqcap V_2)
\geq \beta(U_1) \land \beta(U_2)
\geq \Phi_{\beta}(U_1) \land \Phi_{\beta}(U_2) - \varepsilon.$$

Since ε is arbitrary, this gives the desired result. (FQU2) It is easily proved from the definition of Φ_{β} . (FQU3) If $\Phi_{\beta}(U)=0$, then there exists the identity function $E \in \Omega_X$ with $E \cdot E \le U$ such that $\Phi_B(E) \ge 0$.

Let $\Phi_{\beta}(U) \neq 0$. Suppose that there exist $U \in \Omega_X$ and $r \in (0, 1)$ such that

 $\sup \{ \Phi_{\mathcal{B}}(U_1) \mid U_1 \circ U_1 \leq U \} < r < \Phi_{\mathcal{B}}(U).$

By the definition of Φ_{β} , there exists $V \leq U$ such that $\Phi_{\beta}(U) \geq \beta(V) > r$.

Since $\sup\{\beta(V_1) \mid V_1 \circ V_1 \leq V\} \geq \beta(V) > r \text{ from (FQB2)},$ there exists $W \in \Theta_X$ such that $W \circ W \leq V$ and $\beta(W)>r$.

From $W \circ W \leq V \leq U$, it follows $\sup \{ \Phi_{\beta}(U_1) \mid U_1 \circ U_1 \leq U \} \geq \beta(W) > r.$

It is a contradiction. Hence $\sup \{\Phi_{\mathcal{B}}(U_1) \mid U_1 \circ U_1 \leq$ U} $\geq \Phi_{\mathcal{B}}(U)$.

(FU) It is similar to (FQU3).

Definition 2.3. A function β is said to be a *base* for a fuzzy (quasi-)uniformity Φ on X if $\Phi_{\theta} = \Phi$.

Definition 2.4. Let β_1 and β_2 be fuzzy (quasi-) uniform bases on X. We say β_2 is finer than β_1 , denoted by $\beta_2 > \beta_1$, iff for any $\beta_1(U) > 0$ and $\varepsilon > 0$, there exists V $\leq U$ such that $\beta_2(V) \geq \beta_1(U) - \varepsilon$.

Theorem 2.5. Let (X, β_1) and (X, β_2) be fuzzy (quasi-)uniform bases for (X, Φ_1) and (X, Φ_2) , respectively. Then $\Phi_1 \leq \Phi_2$ iff $\beta_1 < \beta_2$.

Proof. For any $\beta_1(U)>0$, since $\Phi_1 \leq \Phi_2$ we have $\Phi_2(U) \ge \Phi_1(U) \ge \beta_1(U)$.

From the definition of Φ_2 , for $\varepsilon > 0$ there exists $V \subset$ U such that

 $\beta_2(V) \ge \Phi_2(U) - \varepsilon \ge \beta_1(U) - \varepsilon$.

Hence $\beta_1 < \beta_2$.

Conversely, suppose that there exist $U \subseteq \Omega_x$ and $r \subseteq$ (0, 1) such that

 $\Phi_1(U)>r>\Phi_2(U)$.

By the definition of Φ_1 , there exists $V \leq U$ such that $\Phi_1(U) \geq \beta_1(V) > r > \Phi_2(U)$.

Since $\beta_1 < \beta_2$, for $\beta_1(V) > r$ and $\varepsilon = \beta_1(V) - r$, there exists $W \le V$ such that

 $\beta_2(W) \ge (\beta_1(V) - \varepsilon) = r$.

Hence $\Phi_2(U) \ge \Phi_2(W) \ge \beta_2(W) \ge r$. It is a contradic-

tion. Therefore $\Phi_1 \leq \Phi_2$.

Lemma 2.6. Define $U_o: I^X \rightarrow I^X$ as follows.

$$U_{\rho}(\lambda) = \begin{cases} \tilde{0} & \text{if } \lambda = \tilde{0}, \\ \rho & \text{if } \tilde{0} \neq \lambda \leq \rho, \\ \tilde{1} & \text{otherwise.} \end{cases}$$

Then:

(1) $U_o \subseteq \Omega_x$,

(2) $(U_0)^{-1}=U_{i,0}$,

(3)
$$U_{\rho} \circ U_{\rho} = U_{\rho}$$
 and $(U_{\rho} \sqcap U_{\mu}) \circ (U_{\rho} \sqcap U_{\mu}) = U_{\rho} \sqcap U_{\mu}$.

Proof. (1), (2) and $U_{\rho} \circ U_{\rho} = U_{\rho}$ of (3) are easily proved.

Since

$$U_{\rho \sqcap} \mu_{\mu}(\lambda) = \begin{cases} \tilde{0} & \text{if } \lambda = \tilde{0}, \\ \mu \wedge \rho & \text{if } \tilde{0} \neq \lambda \leq \mu \wedge \rho, \\ \mu & \text{if } \lambda \leq \mu, \lambda \nleq \rho, \\ \rho & \text{if } \lambda \leq \rho, \lambda \leq \mu, \\ \mu \vee \rho & \text{if } \lambda \leq \mu \vee \rho, \lambda \nleq \mu, \lambda \nleq \rho, \\ \tilde{1} & \text{otherwise.} \end{cases}$$

we have $(U_0 \sqcap U_u) \circ (U_0 \sqcap U_u) = U_0 \sqcap U_u$

Example 1. Define β_1 and β_2 on X as follows:

$$\beta_1(U) = \begin{cases} 1 & \text{if } U = U_{\widetilde{1}}, \\ \frac{1}{2} & \text{if } U = U_{\rho} \end{cases}$$

and

$$\beta_2(U) = \begin{cases} 1 & \text{if } U = U_{\widetilde{1}}, \\ \frac{2}{3} & \text{if } U = U_\rho \sqcap U_\mu. \end{cases}$$

From Lemma 2.6, β_1 and β_2 are fuzzy quasi-uniform bases on X. From Definition 2.4 we have $\beta_1 < \beta_2$. From Theorem 2.2 we obtain the followings:

$$\Phi_{\beta 1}(U) = \begin{cases} 1 & \text{if } U = U_{\tilde{1}}, \\ \frac{1}{2} & \text{if } U_{\rho} \le U < U_{\tilde{1}}, \\ 0 & \text{otherwise} \end{cases}$$

and

and
$$\Phi_{\beta 2}(U) = \begin{cases} 1 & \text{if } U = U_{\widetilde{1}}, \\ \frac{2}{3} & \text{if } U_{\rho} \sqcap U_{\mu} \leq U < U_{\widetilde{1}}, \\ 0 & \text{otherwise}. \end{cases}$$

Then $\Phi_{\beta_1} \leq \Phi_{\beta_2}$.

Theorem 2.7. Let (X, β_i) be a fuzzy (quasi-)uniform basis of (X, Φ_i) for each $i \in \Gamma$. Let

$$\Theta_X = \{ \prod_{i=1}^n U_{ki} \mid \beta_{ki}(U_{ki}) > 0 \text{ for all } k_i \in K \}, \\ \Theta_X = \{ \prod_{i=1}^n V_{ki} \mid \Phi_{ki}(V_{ki}) > 0 \text{ for all } k_i \in K \}$$

for every finite index set $K = \{k_1, ..., k_n\} \subseteq \Gamma$. Define the function $\beta : \Theta_X \rightarrow I$ by

$$\beta(U) = \sup \{ \bigwedge_{i=1}^{n} \beta_{ki}(U_i) \mid U = \prod_{i=1}^{n} U_{ki} \}$$
 and the function $\beta : \Theta'_X \to I$ by

$$\beta'(U)=\sup\{\bigwedge_{i=1}^n \Phi(V_{ki}) \mid U=\prod_{i=1}^n V_{ki}\}$$

 $\beta'(U)=\sup\{\bigwedge_{i=1}^n \Phi(V_{ki}) \mid U=\prod_{i=1}^n V_{ki}\}$ for every finite index set $K=\{k_1,...,k_n\}\subseteq \Gamma$. Then:

- (1) The structures β and β' are fuzzy (quasi-)uniform bases on X.
- (2) The fuzzy (quasi-)uniform structure Φ_{β} generated by β is the coarsest fuzzy (quasi-)uniform structure on X finer than Φ for all $i \in \Gamma$.
 - (3) $\Phi_{\theta} = \Phi_{\theta}$.

Proof. (1) We will show that β is a fuzzy (quasi-) uniform basis on X.

(FQB1) For any U, $V \in \Theta_X$, we will show that $\beta(U \sqcap V) \ge \beta(U) \land \beta(V)$.

Since $\beta(U)>0$ and $\beta(V)>0$, for ε such that $\beta(U) \wedge$ $\beta(V) > \varepsilon > 0$, there exist finite index sets $K = \{k_1, ..., k_n\}$, $L=\{l_1,..., l_m\} \subseteq \Gamma$ such that

$$\begin{array}{ll} \bigwedge_{i=1}^{N} & \beta_{ki}(U_{ki}) \geq \beta(U) - \varepsilon, & \prod_{i=1}^{n} U_{ki} = U, \\ \bigwedge_{j=1}^{m} & \beta_{ij}(V_{ij}) \geq \beta(V) - \varepsilon, & \prod_{j=1}^{m} V_{ij} = V. \end{array}$$

Since $U \sqcap V = (\prod_{i=1}^n U_{ki}) \sqcap (\prod_{i=1}^m V_{li})$, we have

$$\beta(U \sqcap V) \ge (\bigwedge_{i=1}^{n} \beta_{ki}(U_{ki})) \land (\bigwedge_{i=1}^{m} \beta_{li}(V_{li}))$$

$$\ge \beta(U) \land \beta(V) - \varepsilon.$$

(FQB2) Suppose that there exist $U \in \Theta_x$ and $r \in (0, \infty)$ 1) such that

$$\sup\{\beta(V) \mid V \circ V \leq U\{< r < \beta(U).$$

By the definition of β , there exists a finite index set $K=\{k_1,..., k_n\} \subseteq \Gamma$ such that $\prod_{i=1}^n U_{ki}=U$ and

$$r < \bigwedge_{i=1}^{n} \beta_{ki}(U_{ki}) \leq \beta(U).$$

For each $k_i \in K$, since (X, β_{k_i}) is a fuzzy (quasi-) uniform base, by (FOB2), we have

 $\sup\{\beta_{ki}(V) \mid V \circ V \leq U_{ki}\} \geq \beta_{ki}(U_{ki}) > r.$

Hence there exist $V_{ki} \in \Theta_X$ and $r_i \in (0,1)$ such that $V_{ki} \circ V_{ki} \leq U_{ki}$ and

$$\beta_{ki}(V_{ki}) \geq r_i > r$$
.

Put $V = \prod_{i=1}^{n} V_{ki}$. For each $k_i \subseteq K$, we have $V \circ V \leq V_{ki} \circ V_{ki}$

From Lemma 1.1 (1) and (2), it follows

 $V \circ V \leq \prod_{i=1}^{n} (V_{ki} \circ V_{ki})$ $\leq \prod_{i=1}^{n} U_{ki} \leq U.$

Then we have $V \circ V \le U$ and $\beta(V) \ge \frac{n}{k} \beta_{ki}(V_{ki}) \ge \frac{n}{k} r_i > r$.

Therefore $\sup\{\beta(V) \mid V \circ V \leq U\} > r$. It is a contradiction. Hence for $U \subseteq \Theta_{Y}$,

 $\sup\{\beta(V) \mid V \circ V \leq U\} \geq \beta(U).$

(FQB3) Since (X, β_k) is a fuzzy (quasi-)uniform base, by (FQB3), there exists $U_k \in \Theta_X$ such that $\beta_k(U_k)=1$. For all finite index set $K=\{k_1,...,k_n\}\subset \Gamma$, put $U=\prod_{i=1}^n U_{ki}$. Then there exists $U\in\Theta_X$ such that $\beta(U)=1$.

(FB) Suppose that there exist $U_k \in \Theta_X$ and $r \in (0, 1)$ such that

 $\sup\{\beta(V) \mid V \leq U^{-1}\} < r < \beta(U).$

By the definition of β , there exists a finite index set $K=\{k_1,...,k_n\} \subseteq \Gamma$ such that $U=\prod_{i=1}^n U_{k_i}$ and

 $r < \bigwedge_{i=1}^{n} \beta_{ki}(U_{ki}) \leq \beta(U)$

For each $k_i \in K$, since (X, β_{k_i}) is a fuzzy uniform base, by (FB), we have

 $\sup\{\beta_{ki}(V)\mid V\leq U_{ki}^{-1}\}\geq \beta_{ki}(U_{ki})>r.$

Hence there exist $V_{ki} \in \Theta_X$ and $r_i \in (0,1]$ such that $V_{ki} \le U_{ki}^{-1}$ and

 $\beta_{ki}(V_{ki}) \ge r_i > r$.

Put $V = \prod_{i=1}^{n} V_{ki}$. For each $k_i \in K$, by Lemma 1.1 (1) and (7), we have

 $V \le \prod_{i=1}^n U_{ki}^{-1} = (\prod_{i=1}^n U_{ki})^{-1} = U^{-1}.$

Then we have $V \le U^{-1}$ and

 $\beta(V) \ge \bigwedge_{i=1}^{n} \beta_{ki}(V_{ki}) = \bigwedge_{i=1}^{n} r_i > r.$

Therefore $\sup\{\beta(V)\mid V\leq U^{-1}\}>r$. It is a contradiction. Hence for $U\subseteq\Theta_X$,

 $\sup\{\beta(V)\mid V^{-1}\leq U\}\geq\beta(U).$

Similarly, β' is a fuzzy (quasi-)uniform basis on X.

(2) First, we will show that for all $U \subseteq \Omega_X$ and $i \in \Gamma$ $\Phi_i(U) \le \Phi_{\beta}(U)$.

Suppose there exist $U \in \Omega_X$ and $j \in \Gamma$ such that $\Phi_i(U) > \Phi_i(U)$.

Since β_j is a base of (X, Φ_j) , there exists $V \in \Theta_X$ such that $V \leq U$ and

 $\Phi_i(U) \geq \beta_i(V) > \Phi_{\beta}(U)$.

On the other hand, from the definition of β , we have $\Phi_{\beta}(U) \ge \Phi_{\beta}(V) \ge \beta(V) \ge \beta(V)$.

It is a contradiction.

Second, if $\Phi_i(U) \le \Phi^*(U)$ for all $U \in \Omega_X$, $i \in \Gamma$, we will show that

 $\Phi_{\beta}(U) \leq \Phi^*(U)$.

Suppose there exists $U \in \Omega_X$ such that

 $\Phi_{\beta}(U) > \Phi^*(U)$.

Then there exists $V \in \Theta_X$ such that $V \le U$ and $\Phi_{\beta}(U) \ge \beta(V) > \Phi^*(U)$.

On the other hand, from the definition of β there exists a finite index set $K=\{k_1,...,k_n\}\subseteq\Gamma$ such that $V=\prod_{i=1}^n U_{ki} \leq U$ and

 $\beta(V) \ge \bigwedge_{i=1}^{n} \beta_{ki}(U_{ki}) > \Phi^*(U)$.

Since $\beta_{kl}(U_{kl}) \le \Phi_{kl}(U_{kl}) \le \Phi^*(U_{kl})$ for all $k_i \in K$, we have

$$\begin{array}{ll} \bigwedge_{i=1}^{n} \beta_{kl}(U_{kl}) \leq & \bigwedge_{i=1}^{n} \Phi^{*}(U_{kl}) \\ \leq & \Phi^{*}(\prod_{i=1}^{n} U_{kl}) \\ \leq & \Phi^{*}(U). \end{array}$$
(by (FQU1))

It is a contradiction.

(3) We will show that $\Phi_{\beta}(U) = \Phi_{\beta}(U)$ for all it $U \subseteq \Omega_{x}$.

Since $\beta_i(U_i) \leq \Phi_i(U_i)$, we have $\Phi_{\beta} \leq \Phi_{\beta}$.

Suppose that $\Phi_{\beta} \ngeq \Phi_{\beta}$. Then there exist $U \subseteq \Omega_X$ and $r \subseteq (0,1)$ such that

 $\Phi_{\beta}(U) < r < \Phi_{\beta}(U)$.

From the definition of Φ_{β} , there exists a finite index set $K=\{k_1,...,k_n\} \subset \Gamma$ such that $\prod_{i=1}^n U_{ki} \leq U$ and $\bigwedge_{i=1}^n \Phi_{ki}(U_{ki}) > r$.

Since $\Phi_{ki}(U_{ki}) > r$ for all it i=1,...,n, there exists $V_{ki} \subseteq \Theta_X$ such that $V_{ki} \subseteq U_{ki}$ and

 $\Phi_{kl}(U_{kl}) \ge \beta_{kl}(V_{kl}) > r.$

Hence $\Phi_{\beta}(U) \ge \bigwedge_{i=1}^{n} \beta_{ki}(V_{ki}) > r$. It is a contradiction.

Theorem 2.8. Let $\beta: \Theta_X \to I$ be a fuzzy quasi-uniform base on X. Put $\Theta_X^{-1} = \{U \mid U^{-1} \in \Theta_X\}$.

We define for $U \subseteq \Theta^{-1}_X$, $\beta^{-1}(U) = \beta(U^{-1})$.

r (° / r

- (1) A structure β^{-1} is a fuzzy quasi-uniform base on X.
- (2) The coarsest fuzzy quasi-uniform base β^* on X finer than β and β^1 is a fuzzy uniform base.

Proof. (1) It is easily proved from Lemma 1.1.

(2) From Theorem 2.7, there exists the coarsest fuzzy quasi-uniform base β^* on X finer than β and β^1 where $\Theta_X^* = \{U_1 \sqcap U_2 \mid \beta(U_1) > 0, \beta^1(U_2) > 0\}.$

We only show the condition (FU).

(FU) Suppose that there exist $U \in \mathcal{O}_X^*$ and $r \in (0, 1)$ such that

 $sup\{\beta^*(V) \mid V \leq U^{-1}\} < r < \beta^*(U).$

By the definition of β^* , there exist U_1 , U_2 such that

 $U=U_1 \sqcap U_2$ and

 $\beta^*(U) \ge \beta(U_1) \wedge \beta^{-1}(U_2) > r$.

Since $U=U_1 \sqcap U_2$ iff $U^{-1}=U_1^{-1} \sqcap U_2^{-1}$ from Lemma 1.1(7), we have

 $\beta(U_1) \wedge \beta^{-1}(U_2) = \beta^{-1}(U_1^{-1}) \wedge \beta(U_2^{-1}) > r.$

Hence $\sup\{\beta^*(V) \mid V \le U^{-1}\} \ge \beta^{-1}(U_1^{-1}) \land \beta(U_2^{-1}) > r$. It is a contradiction.

Example 2. Let β be a fuzzy quasi-uniform base on X as follows:

$$\beta(U) = \begin{cases} 1 & \text{if} \quad U = U_{\widetilde{1}}, \\ \frac{1}{2} & \text{if} \quad U = U_{\rho}. \end{cases}$$

We obtain a fuzzy quasi-uniform base β^1 as follows:

$$\beta^{-1}(U) = \begin{cases} 1 & \text{if} \quad U = U_{\tilde{1}}^{-1} = U_{\tilde{1}}, \\ \\ \frac{1}{2} & \text{if} \quad U = U_{\rho}^{-1} = U_{\tilde{1}-\rho}. \end{cases}$$

From Theorem 2.8, since $\Theta_X^* = \{U_1 \sqcap U_2 \mid \beta(U_1) > 0, \beta^1(U_2) > 0\}.$

by Lemma 2.6 and Lemma 1.1(2,5), we have

$$\Theta_{\mathbf{X}}^{*} = \{ U_{\tilde{1}}, \ U_{\alpha}, \ U_{\alpha}^{-1}, \ U_{\alpha} \cap U_{\alpha}^{-1} \}.$$

Therefore we have

$$\beta^*(U) = \begin{cases} 1 & \text{if} \quad U = U_{\tilde{1}}^{-1} = U_{\tilde{1}}, \\ \frac{1}{2} & \text{if} \quad U = U_{\rho}, U_{\rho}^{-1}, U_{\rho} \sqcap U_{\rho}^{-1}. \end{cases}$$

Hence we obtain fuzzy uniformity Φ_{β}^* on X as follows

$$\Phi_{\beta^*}(U) = \begin{cases} 1 & \text{if} \quad U = U_{\widetilde{1}}. \\ \frac{1}{2} & \text{if} \ U_\rho \sqcap U_\rho^{-1} \le U < U_{\widetilde{1}}. \\ 0 & \text{otherwise} \end{cases}$$

References

- R. Badard, A. A. Ramadan and A. S. Mashhour, "Smooth preuniform and preproximity spaces", Fuzzy Sets and Systems 59, 95-107, 1993.
- [2] M. H. Ghanim, O. A. Tantawy and F. M. Selim, "Gradations of uniformity and gradation of proximity", Fuzzy Sets and Systems 79, 373-382, 1996.
- [3] B. Hutton, "Uniformities on fuzzy topological spaces", J. Math Anal. Appl. 58, 559-571, 1997.
- [4] A. K. Katsaras, "Fuzzy quasi-proximities and fuzzy quasi-uniformities", Fuzzy Sets and Systems 27, 335-343, 1988.
- [5] Y. C. Kim and S. J. Lee, "Some properties of fuzzy quasi-uniform spaces", Kangweon-Kyungki Math. Jour. 5(2), 97-115, 1998.
- [6] S. K. Samanta, "Fuzzy proximities and fuzzy uniformities", Fuzzy Sets and Systems 70, 97-105, 1995.

김 용 찬 (Yong Chan Kim) 정회원

1982년 : 연세대학교 수학과(이학사) 1984년 : 연세대학교 대학원 수학과 (이학석사)

1991년 : 연세대학교 대학원 수학과 (이학박사)

1991년 9월 ~현재 : 강릉 대학교 자연 과학대학 수학과 부교수

관심분야 : Fuzzy Toplolgy

김 영 선 (Yong Sun Kim) 정회원

1981년 : 연세대학교 수학과(이학사) 1985년 : 연세대학교 대학원 수학과 (이학석사)

1991년 : 연세대학교 대학원 수학과

(이학박사)

1988년 ~현재 : 배재대학교 자연과 부학부 전산정보수학전공 부교수

관심분야: Fuzzy Toplolgy, Category theory