Generation of Decision Rules Bsed on Concept Ascension and Optimal Reduction of Attributes

개념 상승과 속성의 최적 감축에 의한 결정 규칙의 생성

  • 정환묵 (대구효성가톨릭대학교 전자정보공학과)
  • Published : 1999.08.01

Abstract

This paper suggests an integrated method based on concept ascension and attribute reduction for efficient induction of decision rules from a large database. We study an automatic scheme to generate concept trees by a clustering technique, a method for generalizing databases by the concept ascension technique, an optimal reduction method by means of attributes reduction using the sibmificance of attributes, and an efficient way of reduction of attribute values applying the discernible matrix and functions. The method can be used for the decision making tasks such as an investment planning or price evaluation, the construction of knowledge bases for diagnosis of defects or medical diagnosis, data analysis such as marketing or experimental data, information retrieval for high level inquiries, and so on.

본 논문은 대규모 데이터베이스에서 의사 결정을 위한 지식을 효율적으로 추출하기 위해 개념 상승과 속성 감축에 기반한 통합적 방법을 제안한다. 본 방법은 클리스터링 기법에 의해 개념 트리를 자동생성하고 개념 상승기법에 의해 데이터 베이스를 일반화하며 속성의 중요도를 사용한 속성 감축에 의해 최적감축을 하고 식별가능 행렬과 함수를 사용하여 효율적으로 속성값을 감축하여 최적의 최소결정 규칙을 유도한다. 본 방법은 투자 계획이나 가격 결정과 같은 의사결정 업무 각종 고장 진단이나 의료 진단을 위한 지식 베이스구축 마케팅 분석이나 실험 데이터 분석 고수준의 질의 에 의한 정보검색 등에 효과적으로 사용될수 있다.

Keywords

References

  1. Rough Sets and Data Mining Data mining Using Attribute-Oriented Generalization and Information Reduction N. Cercone;H. Hamilton;X. Hu;N. Shan;T. Lin;N. Cercone(eds.)
  2. Knowledge Discovery in Databases: A Rule-Based Attribute-Oriented Approach D. Cheung;A. Fu;J. Han
  3. Intelligent Integration of Information v.6 no.2/3 CoBase : A Scalable and Extensible Cooperative Information System W. Chu;H. Yang;K. Chiang;M. Minock;G. Chow;C. Larson;G. Wiederhold(eds)
  4. Machine Learning v.2 no.2 Knowledge Acquisition via Incremental Conceptual Clustering D. Fisher
  5. Knowledge Discovery in Database : An Overview W. Frawley;G. Piatesky Shapiro;C. Matheus;G. Piatetsky Shapiro;W. Frawley(eds.)
  6. Proc. RSKD'93 A Heuristic for Evaluating Databases for Knowledge Discovery with DBLEARN D. Fudger;H. Hamilton
  7. Proceeding of the 18th Conference on Very Large Data Bases Knowledge Discovery in Database : An Attribute-Oriented Approach J. Han;Y. Cai;N. Cercone
  8. Proc. RSKD'93 An Attribute Oriented Rough Set Approach for Knowledge Discovery in Databases X. Hu;N. Cercone;J. Han
  9. Rough Sets and Data Mining Generation of Multiple Knowledge from Databases Based on Rough Set Theory X. Hu;N. Cercone;W. Ziarko;T. Lin;N. Cercone(eds)
  10. Generalization and Decision Tree Induction : Efficient Classification in Data Mining M. Kamber;L. Winstone;W. Gong;S. Cheng;J. Han
  11. Rough Sets - Theoretical Aspects of Reasoning about Data Z. Pawlak
  12. International Journal of Computer and Information Science v.11 Rough Sets Z. Pawlak
  13. Machine Learning v.1 no.1 Induction of Decision Trees J. Quinlan
  14. Intelligent Decision Support Handbook of Advances and Applications of the Rough Set Theory The Discernibility Matrices and Functions in Information Systems A. Skowron;C. Rauszer;Slowinski(eds)
  15. Bulletin of The Polish Academy of Science Mathematics v.33 no.11-12 On Optimal Rules in Decision Tables S. Wong;W. Ziarko
  16. Proc. RSKD'93 Quantifying Uncertainty of Knowledge Discovered from Databases Y. Xiang;S. Wong;N. Cercone
  17. Rough Sets, Fuzzy Sets and Knowledge Discovery, Proc. RSKD'93 Rough Sets and Knowledge Discovery : An Overview W. Ziarko
  18. 러프집합과 응용 이성주;정환묵;최완규
  19. 퍼지 및 지능 시스템학회 논문지 v.8 no.6 지식 발견을 위한 라프셋 중심의 통합 방법 연구 정홍;정환묵
  20. FUZZ-IEEE '99, The 8th Int'l Conf. on Fuzzy System Generation of Approximation Rules Using Information Gain 정홍;최경옥;정환목
  21. 정보과학회지 v.16 no.9 데이터마이닝과 의사결정지원시스템 지원철;김민용
  22. Proc. RSKD'93 Finding Reducts in Composed Information Systems M. Kryszkiewicz;Henryk Rybinski