Abstract
In this paper we propose the verifiable self-certified schemes(key distribution scheme identification scheme digital signature scheme) based on ${\gamma}$th -residuosity which make up for defects of Girault's self-certified schemes allow the authenticity of public keys to be verified during the use of the keys. The security of our schemes is based on the difficulty of ${\gamma}$th -residuosity problem and discrete logarithm problem simultaneously.
본 논문에서는 공개키가 사용될 때만 공개키 정당성을 검증할수 있다는 Girault의 자체인증공개 키 방식의 단점을 개선한 검증가능한 자체인증 공개키 방식의 개념을 이용하여 고차잉여류 에 기반한 검 증 가능한 자체인증 방식(키분배 방식. 개인식별 방식 디지털 서명방식 등)을 제안한다. 제 안한 방식의 안정성은 고차잉여류와 이산대수 문제에 기반을 두고 있다. In this paper we propose the verifiable self-certified schemes(key distribution scheme identification scheme digital signature scheme) based on ${\gamma}$th -residuosity which make up for defects of Girault's self-certified schemes allow the authenticity of public keys to be verified during the use of the keys. The security of our schemes is based on the difficulty of ${\gamma}$th -residuosity problem and discrete logarithm problem simultaneously.