The Korean Communications
in Statistics Vol. 6, No. 3, 1999
pp. 939-946

Influence Analysis of the Likelihood Ratio Test in
Multivariate Behrens—Fisher Problem

Kang—-Mo Jung!’ and Myung Geun Kim?2
Abstract

We propose methods for detecting influential observations that have a large influence
on the likelihood ratio test statistic for the multivariate Behrens-Fisher problem. For this
purpose we derive the influence curve and the derivative influence of the likelihood ratio
test statistic. An illustrative example is given to show the effectiveness of the proposed
methods on the identification of influential observations.

1. Introduction

The detection of outliers and influential observations has a long history. However, many
diagnostic measures have been proposed for influence analyses in the context of estimation. A
few works that treat detection of influential observations for test statistics in multivariate
analysis are found. Among others, Kim (1995) investigated the influence of observations on the
likelthood ratio test statistics in comparing covariance matrices based on influence curves.
Influence analysis in testing problems is very important because in extreme situations, a single
observation can dominate our conclusion about the hypotheses as can be seen in Section 5.

The likelihood ratio test (LRT) statistic in the multivariate Behrens-Fisher problem contains
two different covariance matrices. It is well known that the covariance matrix is very sensitive
to influential observations, and so is the LRT statistic. Case deletion diagnostics are widely used
in many statistical analyses (Cook and Weisberg, 1982). However, case deletion diagnostics
require amount of computation time. The influence curve was introduced by Hampel (1974) as
a device to measure the effect of an infinitesimal contamination at an observation on a statistic.
It has been used as a criterion for detecting outliers and influential observations. Another simple
method for influence analysis is the derivative influence (De Gruttola et al., 1987), the differential
change in an estimated parameter resulting from a slight perturbation in the weight assigned to
a given observation.

In this work we derive the influence curve and the derivative influence of the LRT statistic in
the multivariate Behrens-Fisher problem for the purpose of investigating the influence of
observations. To get the influence curve we appropriately define statistical functionals for the
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observations. To get the influence curve we appropriately define statistical functionals for the
LRT statistic and parameters. We use the empirical influence curve as a sample version of the
influence curve that provides useful information about the influence of observations on the LRT
statistic. It is well known that the sample covariance matrix is more sensitive to influential
observations than the sample mean vector. Thus, for getting the derivative influence the
perturbation is chosen in which a weight is put on the covariance matrix for an observation.

Section 2 discusses the LRT statistic in the multivariate Behrens-Fisher problem. We derive
the influence curve and the derivative influence on the LRT statistic in Sections 3 and 4,
respectively. In Section 5, a numerical example is given and it will show that the case deletion
diagnostic and proposed methods have the same results.

2. LRT Statistic in Multivariate Behrens—-Fisher Problem

Suppose that two independent random samples x;,'r, x,  and X1, Xy

(n=n,+ n,) are drawn from p-variate normal distribution N( g, X)) and N( g, ),
respectively. The Behrens-Fisher problem is the test of the null hypothesis H, against the
alternative hypothesis H; defined by
Hy: p= pa(= p), Hy: m+* po. (D
Let F,; be the distribution function from the ith population for /=1,2, and let p;= p;(F)),

X.= X,(F;) be the statistical functionals for each population. The empirical distribution
function based on #; observations for each population is denoted by 77\, . Then L\i= i /F\,-)

and /2'\1: X,( F)) become the maximum likelihood estimators. We write L, g;, X;) as the

likelihood function based on #; observations for each population. Under H;, the maximized
likelihood function becomes Ly, ZDLy( 1y, /Z'\z), where

L 71\,», /Z'\,-)= (2m) _M/ZI /2\,{ T2y bl Therefore, the statistical functional related to this
maximized likelihood is
LE(F,, Fy)=2n) "2~ m? 5| ™4 5, 7"
Let pu= u(F,,F;) and Xy= Xy(F,,F;) be statistical functionals satisfying the
following equations
p= (g By tmy T D7 Zp Tl mtng Exn 0 m), 2)
Ty= It d d, 3)

1

d;= p;— p. Then /[\l= u(F,, F,) and /Z'\,U'—“ 2o (F,, F,) are the maximum likelihood

estimators of g and X, under H, (Mardia et al, pp. 142-143, 1979). Under H, the
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maximized likelihood is Ll(/;t, /2'\10)142(//\1, 3}\20). Then the statistical functional related to

this maximized likelihood becomes
LE(F), Fy) = ]iII(Zn)‘”'”/ZI b I
xexp[— (/e 2y Z)— di Iy di).
Hence the statistical functional A= A(F;, Fy) related to the LRT statistic is easily computed

T 1

as
A = _2 IOgLFo(Fl,Fz)/LFl(FI,FQ)
= glni 10g(1+ dz'T Zi_l dz) (4)
using . = -+ & T a2 d a3 and
| Zol = | ZIQ+ & 7' 4.

3. Influence Curve

Let 7= T(F, F,;) be a parameter which is expressed as a functional of the distribution
functions Fj, Fy. Assume that F| is perturbed as F;=(1—¢&)F,+ &8, , where & > (and
8 , is the distribution function having unit mass at x. Then the influence function I( x, 7) for
the statistical functional 7= T(F| Fy) at x is defined (Hampel, 1974) by

Kz, 7= tig—L=L,
where T'= T(F}, F,). We expand T= T(e) as a convergent power series of & as follows
TNe)=TFLF,)=T+ T Ye+ 0(&%. (5)
The influence curve I( x, T) is obtained as the first order differential coefficient of 7(¢) at

e=(), that is, the coefficient T of the first order term of € in the power series expansion

).

The definition g, (e)= fxdﬁl vields g, (&)= p,+ ze, 2= x— pu;. Also we have

5= Z+(z 2’ = ZDe+ 0(Y),

whereas p; and X, are not perturbed since only F, is perturbed.
If a perturbed matrix A(e) for a matrix A is assumed to be expanded as
A=A+ A%e+ 0(eh), where AV= dA(e)/del .y

I= A(e) A(e) ! gives

, then the identity
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A= A7+ A7t 0(), (6)
where A W=— """ 47",
By using (6), we get
(7' = 5740 57T = 57 22" 5 et 0. )

The perturbed functionals for X5 can be written as

210(5) = ZI(E)+ dl(E) dl(S)T: 210+ 210 (1)E+ 0(82),
220(5) - 22(5)+ dQ(E) dQ(S)T:‘ 220+ 220 (1)6+ 0(52),

where d\(e)= p,(e)— ple), dy(e)= py— p(e), and for 1=1,2

5,%= 5V4 a4 4,
-0 _

(nT T

+ a4 a.

Equation (6) vields 3, S P A P

Let I'(e)=( gln,- Zo(e ™ and 2(e)= gln,'éflo(e) “! p.(e). Then

ro - 21"1'11 5, Zﬂm s,'r
W -1 o) -1 o) -1
7 = glnz-( X n = Xy 2 o ow).
Since p(e)= I'(e) 7(e), n W atisfies the linear equation
ﬂ(n: y ,u(l)+ e, (8)

where

9)

1

a4 = Zln,-l' S ' a" 2y dir Lt dodl 2,

a = nII‘{ 210_1 zZ— Zlo—l(z ZT_ 21+ d1 ZT+Z dlr) 210_1 dl}’ (10)

I}) (¢)) D

where I, is the identity matrix of order p. By solving (8) we get u( , d =z— /t(

and d, W _ 7 W Also we can obtain 2 M fom (7), and X, =0 . When F, is

perturbed, we will get necessary results by interchanging the subscripts 1 and 2.
Then the first order differential coefficient of the perturbed LRT functional A(e) becomes
A= 21n,-(1+u,-)‘1( a" =7 a+2 a7 570 a4, (1)

T -1
where u,= d;, X,

d;.

Among three popular sample versions of the theoretical influence curve, for example, the
empirical influence curve (EIC), the deleted empirical influence curve, and the sample influence
curve (Cook and Weisberg, 1982), we will use EIC for simplicity. It is well known that all three

sample versions yield similar results. The EIC is obtained by substituting the empirical

distribution functions F,, F, and the observation x; for F|,F, and x in the definition,
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respectively.

4. Derivative Influence

Let 7 be an estimator of 7. The derivative influence is derived by considering a perturbation
scheme represented by w in which the distribution for only one observation is perturbed. When
we denote by T(w) the estimator of T under this perturbation scheme, we assume that

T= T(w,) for some w, . If only the jth observation is perturbed, the derivative influence is
defined by

DT = —d%’l (12)

w= w,

(De Gruttola et al., 1987).

Under H), assume that only observation x; (1<j<n;) is drawn from N( g,, X,/w). This
perturbation i1s based on the fact that the sample covariance is more sensitive than the sample
mean vector. Let g,( F ,v)=_;,» and ZX,( F))= S, Under the perturbation scheme, the
maximum likelihood estimators become

w(w) = (n+w—1) _1{n171+(w— D x;},
/Z\l(w) = S+ (w—D(n+w—1) "X xj—_ar:)( x,—;) T

whereas //1\2= Xy /X\2= S,. Note that //1\1(1)= 71\1=—;1 and /)?1(1)= /Z\1= S,. Then

we get the derivatives of /;z\l(w), /Z\l(w) at w=1 as

—~ d py(w) — ~ - _
Dj( lll): ’—ﬂj&()ﬂ w=1= nil( x;— xl), D,‘( 21)= ‘}Tl( X;— xl)( xXi— xl)T,

-~ -1 — -1 ~ s -]
and also D,( 21 )=_ 21 D]( 21) S] .
Similarly, under H, we consider the perturbation scheme in which x; (1<j<#n;) is drawn

from N(u, ¥, /w). The likelihood function gives the maximum likelihood estimators

ww) = T ow),
Zuw) = Si+Ca— ww)Cr— 3™+ 2= Cxm )= ),

Tuw) = Syt Cxy— p(w))( xo— m(w))7,
where /I’(w):{(nl-i-w—l)g'\m(w)_1+n2§'\20(w) 1y 71 and

B w = Zp(w) U a+(w—1) Tp(w) ! xj+m Sp(w) " xp. As in Section 3, the
chain rule of the differentiation yields the linear equation

D{ )= AD{ )+ B; (13)
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—~ o~ — =1 — —~ —~ — =] —~ —~
where B;={1—( x,— W' Ty (x,— pn T Xy (x,— p) and 4 is the same

with 4 in (9) when we used the empirical distribution functions F} and F, . Similarly to
(8) we can get the derivative influence D p) at x; by solving (13).
Some algebra yields the perturbed LRT statistic as
W w) = nylog {1+ n ' (ny + w— D uy(w) } + nylog {1+ %, (w) },
where  uA{w)=( 711-(w) - /;t( w) T /Z\',v( w) " //\zi(w) - /;\z( w)). Therefore, we get the

derivative influence of A as following

~

n U e~ T —= -1 —~ —~ T o~ =1~
D;(}) = 1_{_1&1 {—nf— +2 dl Z] D]( d1)+ d1 Dj( 21 ) dl}
+ 1+2/u\2 2dy, S, D{ dy,

where D{ d) =D, 1)) —D; ) and D "dy)=—Dy p.
5. Numerical Example

The empirical influence curve and the derivative influence described in Sections 3 and 4 are
applied to the hook-billed kites data (Johnson and Wichern, 1992, Tables 5.7 and 6.7). The data
set has measurements on two variables (tail length and wing length in millimeters) for 45 male
and 45 female kites, respectively. The observations are labelled as 1 to 45 for male kites and 46
to 90 for female kites.

The maximum likelihood estimators based on the full data set are 71=(189.3,280.9) T

—_ r T oo _(288.2 T1.7 _(118.0 119.6
x,=(193.6,279.8) 7, p=(193.1,280.2)7, S, (77_7 165.5), S, (119_6 203_9),

= _(302.7 75.1\ = _(118.3 119.4
210 (75.1 165.9)’ Zm (119.4 204.1

solving the simultaneous equations (2) and (3) iteratively with the termination rule that the

). The above results are obtained using S-PLUS by

maximum difference between two values of /;\z in the previous step and in the current step is
less than 0.001. The LRT statistic based on the full data set is A = 362, and therefore we
conclude that the null hypothesis is not rejected by comparing ng (0.05)=5.99, where

2 ,(@) is the upper ath percentile of the %% distribution with & degrees of freedom.

The index plots of the empirical influence curve and the derivative influence for the LRT
statistic from (11) and (14) are shown in Figures 1 and 2, respectively. We can observe that
observation 31 has high influence.
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Figure 1. Empirical influence curve. Figure 2. Derivative influence
The case deletion results are presented in Figure 3. The vertical axis denotes A— A (» Where

Ay is the LRT statistic without the Jth observation. If this measure is large, then the

@)

corresponding observation has large influence on A. The case deletion diagnostic method yields

the same results as the empirical influence curve and the derivative influence. Furthermore,
A 3 = 22.47 gives that the null hypothesis is rejected. It implies that opposite conclusions are

made by removing only observation 31 or not. We conclude that observation 31 is a large
influential observation on the LRT statistic.

31

15

Case deietion
10

Figure 3. Case deletion diagnostic

The case deletion method could be a giant time-consuming job, particularly in the
Behrens-Fisher problem, because we should solve equations (2) and (3) iteratively. Therefore,
methods of the influence curve and the derivative influence are efficient in detecting influential
observations.
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