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Abstract

In this paper we consider a polling system with two classes of stations: high
priority and low priority. High priority stations are polled more frequently than low
priority stations. We derive an exact and explicit formula for computing the mean
waiting times for a message when the arrival processes are batch Poisson. In general,
the formula requires to solve two sets of simultaneous equations. By specializing
them to the case of two priority classes, we greatly reduce the number equations and
provide a simple formula for the mean waiting times. We apply the results to a data
communication processing system and show that the overall mean waiting time can
be reduced by using priority polling.

1. Introduction

A polling system consists of a single server shared by multiple stations or queues. In this
paper we consider a priority polling system with two priority classes. In this system each
station is served in an order specified in a polling table, and high-priority stations are polled
and served more frequently than low-priority stations. There are N; high-priority stations
and N,=JXxL low-priority stations. Each polling cycle consists of L phases, and every
high-priority station is listed in each phase repeatedly but the low-priority stations are listed

only once in one of the L phases. Thus, each phase has N, J entries and the polling table

consists of M= (N;+ )X L entries. In one cycle, the high-priority stations are polled L

times, but the low-priority stations are polled only once.

The priority polling policy can be employed in an AICPS(Advanced Information
Communication  Processing System) system. The AICPS system developed by
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ETRI(Electronics and Telecommunications Research Institute) provides a nation-wide platform
for information communications. In the AICPS system, a HSSF(High Speed Switching Fabric),
as a server, is connected to various kinds of delivery nodes(stations) such as PNAS(Packet
Network Access System), WNAS(Web Network Access System), and ATM(Asynchronous
Transmission Mode) network access system. In the AICPS, the ATM network access nodes
usually have higher traffic load than the subscriber network access nodes. By making the
HSSF poll the ATM access nodes more frequently than the subscriber access nodes, one may
improve the overall system performance.

We consider stations with infinite capacity buffers. The message arrival process for each
station is assumed to be a batch Poisson process. An example of batch Poisson process is an
AICPS with a HSSF switching packets(messages). Here all packets arriving at each node are
of fixed-length, but each node gets Poisson arrivals of variable-number packets. The batch
Poisson processes are assumed to be independent with different rates across the stations. The
number of messages in a batch is allowed to have an arbitrary distribution. The service times
have arbitrary distributions and are independent too across the queues. The switch-over times,
which start at the completion of serving one station and end at the polling instance to the
very next station, have also arbitrary distributions and are independent across the queues. The
service policy is exhaustive, meaning that once a station receives the token it transmits until
its buffer is empty.

We assume that the system parameters for the low-priority stations depend only on their
positions within the phases and not on which phase they belong to. For example, suppose
there are three high-priority stations 1, 2 and 3, and four low-priority stations 4, 5, 6 and 7.
Suppose there are two phases, and in the first one the station 1 is listed first and then
followed by 2, 3, 4 and 5. In the second phase, the polling order is 1, 2, 3, 6, 7. In this case
the above symmetry assumption means that the stations 4 and 6, and the stations 5 and 7
have the same batch arrival rates, batch size distributions, service time distributions, and
switch-over time distributions. We allow, however, all high-priority stations have different
parameters to each other.

The analysis of general cyclic polling systems can be found in Ferguson and Aminetzah
(1985), and Takagi (1986) among others. Priority polling systems with general service order
tables when the message arrival processes are independent Poisson have been investigated by
Eisenberg (1972), and Baker and Rubin (1987). These two latter works have been extended to
the case of batch Poisson arrival processes by Ryu et al (1998). In general, calculating the
mean waiting times' for a message, when the arrival processes are independent Poisson or

independent batch Poisson, requires to solve a set of M simultaneous equations and a set of

M?  simultaneous equations. In this paper, we show that by specializing these sets of
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equations to the case of two priority classes and by utilizing the aforementioned symmetry
property for the low-priority stations we are able to greatly simplify the equations to a single

set of (N;+ ])2><L equations and provide a simple formula for the mean waiting times.

In the next section we briefly outline the results of Ryu et al (1998) which provide a
formula for the mean waiting times for a priority polling system with a general service order
table. In Section 3 we specialize these results to the case of two priority classes of stations,
and apply the results to a data communication processing system showing that the overall
mean waiting time can be reduced by using priority polling..

2. Priority Polling With a General Service Order Table

In a priority polling system with a service order table, each station is polled in turn
according to the polling table. We call each entry in the polling table a pseudostation. We

have N= N;+ N, stations with infinity capacity. Suppose there are M(= N) pseudostations,

i.e. M entries in the polling table, and let (k) denote the index of the underlying station
which corresponds to the kA-th pseudostation. For example, with a polling table I=[1,2,1,3],
there are three underlying stations indexed by 1, 2, 3, and four pseudostations with

)=1, I(2)=2, I[(3)=1, I(4)=3.

The service policy is exhaustive, which means that the server continues to serve a station
until it becomes empty. The messages arrive at each station in batch, and the batches

arriving at the station 7 (:=1,2,...,N ) follows a Poisson process with arrival rate A,
These batch Poisson processes are assumed to be independent across the stations. Let m; be
the number of messages in a batch arriving at the station ¢, and S, be the service time of a

message in the station 7. We assume that m;s and S;'s are imdependent across the stations

and are allowed to have arbitrary distributions.

Let D,, k=1,2,...,M, be the time spent for switch-over to the £k-th pseudostation from
the previous pseudostation. Define 7T, called station time, be D, plus the time spent for

serving messages in the A-th pseudostation. Note that each polling cycle has different station
time. In equilibrium state, however, all station times for a pseudostation have the same

distribution. Thus, we only consider one representative of them which we denote by T,.
Denote by J, the time during which messages are accumulated for the FA-th pseudostation. If

I(k)=1 then [, is the time elapses from the last departure to the next poll for the station
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i. In the case of I=[1,2,1,3], J, equals T,+D; and J, equals T3+ T4+ T+ D,. We
define C,=J,+ T,— D,. If (k) =1 then C, is the time between two consecutive departures

from the station i

According to Ryu et al (1998), the mean of the waiting time for a message in the £A-th

pseudostation, denoted by W,, is given by

var(/J,) N E(J») 4 P - _E(S%w)
2E(J) 2 2(1— o xw) E(S 1»)

E(mzl(k)) —E(m pp)
24 (1= 0 1) {E(m g}

where 0;,=A;E(m,)E(S,), i=1,2,....,N. Now let W; be the waiting time for a message in

E(W) =

+

the station 7. To give a formula for computing the mean of W, let us introduce some more

notations. Denote by C one full cycle time of the server. Note that it follows that
C= ;‘_‘1 T,= ng C, where /dlg; ~ denotes summation over all pseudostation indices &
= =1 =i

such that (k) =i The mean waiting time for the station ¢ is now given by

_ l-o
E(W) = B0 =0y wtr—, EUVE)

where p= g:lp,;

We see that the formula requires the first two moments of J,. To give the formula for
computing these moments, let %,, equal 1 if messages arriving at the kA-th pseudostation
during the station time 7, are not served until the next visit to the kA-th pseudostation, and

equal 0 otherwise. For example, if I=1[1,2,1,3], then

H={ha hn hy hy| _
hy hy hy hy
h41 h42 h43 h44

The basic relationships between the first moments of J., D,, T, and C, are

—_—
—_— O
— D

1
ol
0

U= 204 E(T,)+E(D) @)

E(Tw) = E(Dp) + 0 xnE(Ch) (2.3)
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E(Ty) =E(D,) + {0 1pn/(1— 0 )} E(J,). (2.4)

From the above four identities we obtain a set of M simulataneous equations for computing

the first moment of J, :

EUD= 2ok B(D) + 72— B(/,)|+ E(D). 25

“PrKe)

The variance of [, depends on the second moments of 7,’s. Note that the distribution of
the cross product 7,7, depends not only on the pseudostation indices k. and ¢ but also on
which one is visited first. Therefore, we denote the covariance of T, and 7T, by 7»,, when
the # -th pseudostation is visited before the k-th pseudostation. Then by Ryu et al (1998)

we have

1__
Var(jk) = P 1o ﬁ Tk[h 1Y + Var(Dk). (26)
(28 @) ?+k

Ryu et al (1998) give a system of M’ equations for calculating vir's (1<k ¢<M) as

follows :
(i) ¢<k
() ﬁ 5! =
Yy = l_pl(k)( p: +17/nhkn+ erinhkn+ nzt?’n[h;m) (27)
(i) >k
fe) = =1
Ve = 1_2kj(k) ( ngirnlhkn+ grn/hkn-*_ n§+lrinhkn) (28)
(ii) 2=k

_ var(D,) + /11(k){E(SI(k))}Z{E(mZI(k))— E(m](k))}E(]k)
(1*.01(/»)2 (1"01(k))2

+ A in ETHESEm 19+ 2 1 (ES 1) (Em 1) (Emy— Em )}

47

(11— 3, Pre
(1= o p)’+ 1—0 10 gkhmhkn (2.9

3. Two Priority Classes

In this section we specialize the results of Section 2 to the case of two priority classes.

Suppose that there are N, high-priority stations and N, = Jx L low-priority stations. In the

polling table there are L phases and each phase lists all the high-priority stations and J
low-priority stations. Thus, while every high-priority station appears repeatedly in every
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phase, a low-priority station is listed only once in one of the L phases. Here the basic
assumption is that all the system parameters, such as batch arrival rates and distributions of
batch sizes, service times, switch—over times etc, for the low-priority stations depend only on
their positions within in the phases and not on which phase they belong to. We will see that
this assumption enables us to greatly reduce the number of equations to solve for computing

the first two moments of J,’s. In fact, there is no need to solve the system of M equations

given in (2.5), and the system of M’ equations given in (2.7), (2.8) and (2.9) is reduced to a
system of (NN, + J) XM equations.

Suppose that in each phase the N; high-priority stations are listed in the same order and

before the low-priority stations. We note the following useful facts about 7%,,'s :

(i) 1<j=N,;, 0sn<L-1

Lif [+H1+n—DWN+DIy<e<[j—1+n(N+Dly

0 otherwise 3D

hj+n(N1+]),1 ={

() 1</<], 0<n<L—1

1 if ¢=+=N+ji+n(N+))

0 otherwise (3.2)

hN1+j+n(N1+]),i ={

where [ « 14 denotes mod M.

3.1 First moments of J,'s

Here we consider the formula for calculating the means of J,'s.

High-priority stations (J;4,n+p's with 1</<N), 0<xu<L—1)

From the equations (2.2) and (3.1) we have

-1 NtT
E(Cjtun+p) = l=§#=n 2 7 jvuirp,ivin+ pECT iv i+ )

N +T
T lv*jhi+n(N1+D.i+n(N,+])E(Tz'+n(Nx+j))

+ E(T s nnep) (3.3)

N 47T .
= _ZH E(T istn-1,m+0)+ g E(T iy u,+p)

1=y
+ E(T jiunv+0)-
By the symmetry property of the low-priority stations it follows that
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E(T jsun+p)=E(T), 1<i<N+], 0<n<L-1. (3.4)
These two equations (3.3) and (3.4) entail that
N+T

E(Cj+n(Nl+])) = = E(T)).

From (3.4) we also have

—1 N+ N+T
E(O)= & % E(Tvunsn) =L 3 E(T),

=
Thus we can deduce that

E(C+unm+n)=E(O)/L. (3.9)
Finally from (2.3), (24) and (3.5) we have

E(Jjsntm+0) = {1 =0 G4 v+ ;P ECC v +0)

={1-0,E(O)/L. (3.6
The expected value of C can be computed by the formula
E(O)=EWD)/(1-p) (3.7

where D= g:le‘

Low-priority stations (Jy +j+nn+p's with 1<7<J, 0<n<L—1)

Here again the equations (2.2) and (3.2) entail

=1 N=*J
E(Cn+jenv+p) = . z By visnv+ 0, i+ 1N+ D ECT i v+ )

=0lxn 1=
N+ T
2oy P i+ pECT i n(N,+1)
+ E(T N+ jr v+ )
-1 N +J N+T
= ,=§; = E(Ti+l(Nl+I)>+ . 2 .E(Ti+n(N,+]))

Fn 1 i=1,1¥N+j

+ E(T § 4 jsn(v+0)

=1 N +J
= Z] Z‘ E(Tz'+l(Nl+]))

=E(O).
Thus we have
E(J y+j+nv+0)={1—01n+}ECC). (3.8)
The equations (36) and (3.8) with use of (3.7) give explicit formula for computing the
expected values of J,'s so that there is no need to solve the system of M equations as is

given in (2.5).
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3.2 Second moments of J,'s

We consider here the system of M equations for computing 7,,’s. We note first that by
the symmetry property of phases it follows that
Ykt nN+D, £ = ¥k IM+ £ = n(N + D]y (39)
for k=1,....Ni+J, n=1,...,(L—=1)N,+]) and ¢ =1,...,M Thus one only needs to
calculate 7,,'s for 1<A<N,+J, 1< 2 <M The rest of #'s can be obtained by (3.9). Below
we simplify the equations (2.7), (28) and (29) for calculating these 7,.,’s for
1<k<N,+J, 1<2<M

High-priority stations ( 7,,’'s with 1<A<N;)

Let Ki(B)=k+1+(L—1)(N,+J)). One can see from (3.1) that
7 _{1 if 1<n<k—1 or Kl(k)<n<M
=

(0 otherwise
Thus for 1< ¢ <k the three summations in (2.7) turn out to be

¥ ooy = ﬁ s
nﬁﬂ enhn T S
’;Z rlnhkn E r[ﬂ

nzll nlhlm_ zrn[y
and for ¢ =k the one in (2.9) turns out to be

S S £

Now for £ >k the first and the third summations in (2.8) include #'s with first index

(k)

exceeding N;+/J. However, by the symmetry property of phase we have

Yo = ¥V [n—m(N,+ Dyl € — m(N+ Dy
for any integer m. Let K,(/)=[#¢ —M+N,+Jly and K3(¢)= ¢ — M+ N;+ ] Then,
for k< ¢ <K,(k), it follows that

N+JT
) ) -
n=1r”1hk"= 2 7 ne n2+lr[nh/m:0’
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and for K,(k)< ¢ <M, we have that

ﬁ N +T
f Yo hon= Vne = Y on, Kal #)

n= n=K,(¢)

Ernihlmzilrn[

n=1 n=1

21 ~1 Kg([)_l
Fon= S Te= 2 Tt

T 2ntt kn =B 5 in ZT0 K{(¢),n

By these simplifications the system of the equations (2.7), (2.8) and (2.9) is reduced to

) 1<e<k

O Kk ﬁ
¥ope = 7 ent
+ l—pm(n: (M

() k< e <K,(k

M
M

S5

N +J _
. P Kk
Vke = l—pl(k)( gﬂr"’m”_i_ ;2117”’)
(i) K (B< e<M
N+T — Ki(£)—1
N Orrn :
Y e = 1“'0](}‘;) ( e 3(1)rn’K3([)+ ;lerni + n=2;+1 7K3(1’),n)
v) ¢ =%
- Var(Dk) + /1I(k){E(SI(k))}Z{E(mzl(k))_E(ml(k))}E(]k)
k=

(1—p xp)? (1—pxn)?
+A I(k)E(]k){ESQI(k)Em nt+An(ES 1) (Em ) Em%y— Em )}

(1 54 O 1x ﬁ
~(1—ogp)+ 1_pl(k)( ¥t w? )

Furthermore the formula (2.5) is now rewritten as

1— _
var(]k)=—7eﬂ( zlrkn-i- _$ r/m)-i— var(D,).
1\ =1 n=R8)

Low-priority stations ( 7,,'s with N, {AZ<N;+))

In this case it is clear that h,,=1 if n#k and 0 otherwise. Define K (n)=1[n]n+;,
Ks(ﬂ, f)-':[[ —n+K4(n)+M]M, Ke(f):[é]jvﬁ.], K7(7Z, [)Z[KG(Z)“  +n+

+ M] . By similar arguments as in the case of high-priority stations we conclude
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) 1<2<k
__ Py g sh >
P ke I_PI(k)(n= +1r[ + ’;erln_l_ ;Zl[?’,M)
(i) k<2 <M
£ 1» > Sh
(A S ( nﬁ[TKAn),Ks(n,l)_}— ,lernl T +17K5(1),K7(n,1))
(i) ¢ =k

Y= var(D,) n A i {E(S ip)YHE(mP) — E(m y ) YE(J)
B (l—p )t (1—pxp)?

+ A iy ETHESYWEm 19+ A 19(ES 1) (Em ) Em¥ — Em )}

L 3 0 1w ﬁ
(1 pl(k)) + 1‘"01(k) n= ,n¢k7[m'

And, the formula (2.5) is rewritten as

1— o ﬁ
=Lt + var(Dy).
var(/y) o rn  nefes” tnt var(Dy)

3.3 An application

We consider a data communication processing system with 14 stations, where 2 of them
each carry 25 percent of the traffic and the other 50 percent is evenly distributed among the

rest of the stations. Specifically, we set A;=0.048/us (here, us means microsecond) for the
high traffic stations and A,=0.008/us for the low traffic stations. We consider a HSSF

server with transmission rate of 640 Mbits /second. We assume that all messages are of
fixed length of 64 bytes. This means that the service time for a message is fixed to be

64x8 / 640%10°%(s) = 0.8(us). Also, we consider fixed switch-over time of 0.1(gs). For
the distribution of the batch size we assume that P(m,=#%) = 2% k=1,2,.... Thus
E(m;)=2 and E(m?)=6. In this case, 0;=0.048x2x0.8=0.0768 for the high traffic
stations, ©0;=0.0128 for the low traffic stations, and the total system intensity is

0=2x0.0768+12x0.0128 = 0.3072.
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Figure 1

We consider the effect on message waiting times of polling the two high traffic stations 1, 2,
3, or 4 times per cycle. In Figure 1, we plot the mean message waiting time averaged over
all stations. In fact, though not reported here, as the number of polls per cycle of the high
priority stations increases, the mean waiting times at the high priority stations have large
reductions in return for a smaller increase at the low priority stations. Figure 1 shows that
the overall system performance is optimized when the server polls the high priority stations

twice as frequent as the low priority stations.
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