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Wavelet Estimation of Regression Functions with Errors in
Variables?
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Abstract

This paper addresses the issue of estimating regression function with errors n
variables using wavelets. We adopt a nonparametric approach in assuming that the
regression function has no specific parametric form. To account for errors in
covariates, deconvolution is involved in the construction of a new class of linear
wavelet estimators. Using the wavelet characterization of Besov spaces, the question
of regression estimation with Besov constraint can be reduced to a problem in a
space of sequences. Rates of convergence are studied over Besov function classes
By, using L, error measure. It is shown that the rates of convergence depend on
the smoothness s of the regression function and the decay rate of characteristic
function of the contaminating error.

1. Introduction

Let (X, U) denote a pair of random variables and consider the problem of estimating the
regression function #(x)=E(UX=x).Due to measuring mechanism or the nature of the
environment, the variable X is measured with error and is not directly observable; see Fuller
(1987) or Carroll, Ruppert and Stefanski (1995). Instead, X is observed through Y=X+Y,
where W is a random noise. It is assumed that W has a known distribution, and is
independent of (X, U). Given a random sample (Y, Uy,...,(Y,, U, from the distribution
of (X,U) we want to estimate #. Here we adopt a nonparametric approach in assuming
that ¢ has no specific parametric form.

A traditional approach to regression estimation is by orthogonal series. Recently, wavelet
curve estimation has become a well-known and sound technique for adaptively estimating

functions. Optimal rates of convergence have been thoroughly examined for different
observation schemes by many authors. Most current wavelet methods focus on ordinary
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regression, see e.g. Donoho and Johnstone (1994). This paper explores the possibility of
applying an ordinary nonparametric wavelet regression estimator to the problem of estimating
the regression function with errors in covariate.

Regression analysis with errors in varnables is evolving rapidly. See, for example, Stefanski
(1985), Stefanski and Carroll (1985, 1991), Bickel and Ritov (1987). Recently, for the problem of
estimating regression function with errors in covariates, Fan and Truong (1993) address
optimal rates of convergence of kernel estimators and Koo and Lee (1998) study rates of
convergence of B-spline estimators. One may want to refer to Fan and Truong (1993) for
more related references.

The basic idea is closely related to the deconvolution techniques. Consider the deconvolution

problem of estimating the density f of X based on Y,, =X, + W,, 1<m<n Denote the
density of Y by g and let Fy denote the distribution function of W Then

g3 = [ Ay~ wdFu)
and
O =0 )Px(D,
where @, denotes the characteristic function of a random variable . This suggests that the

marginal density f can be estimated by the deconvolution method.

The form of estimator studied in this article is closely related to Fan and Truong (1993)
and Koo and Lee (1998). To account for errors in covariates, deconvolution is involved in the
construction of a new class of linear wavelet estimators; see, for example, Fan (1991) and Fan
and Koo (1999) for studies on deconvolution. A wavelet estimator of regression function p
can be given by

p* =
where »* is an estimator of the function Hx) = w(x)Ax) and and F* is a deconvolution

density estimator of f. The final estimator has the following form:

/J*(x) ZZ]:WM( Yl,---, Yn)Uj

with weights W, (Y,,...,Y,) constructed to account for measurement errors. Fourier
transform and wavelet bases are used for this purpose.

Using the wavelet characterization of Besov spaces, the question of regression estimation
with Besov constraint can be reduced to a problem in a space of sequences.

Rates of convergence are studied over Besov function classes By, using L, error measure.

It is shown that the rates of convergence depend on the smoothness s and the decay rate of
characteristic function of the contaminating error.

The organization of the paper is as follows. In Section 2 Besov space and wavelets are
described for the introduction of notation. Section 3 proposes wavelet estimators for the
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estimation of regression function with errors in variables. The asymptotic properties of
estimators given in Section 3 are proved in Section 4

2. Besov spaces and wavelets

In this section, we recall definitions and set notation for later use. For a function h, let
hfx) =2"20(2x— k) and let
WD) = [ e " n(x)dx
be the Fourier transform of 4. By change of variable,
@) =27 exp(—ith/2") p(4/27). 2.1)
For a random variable U, let @, denote the characteristic function of U defined by

QD =Ee™ let M, M\, M,, - and C denote positive constants which are independent of

n, where C is not necessarily the same at each appearance.
2.1. Multiresolution Analysis and Wavelets
Let us recall that one can construct a function ¢ such that:

(S1). The sequence { ¢(x—k):keZ} is an orthonormal family of L,(R). Let Vy be the
subspace spanned by { ¢(x— k): k= Z};

(82). For all jeZ, V,CV;y if V; denotes the space spanned by {p,pke 2);

(S3). ¢ is of class C7, the space of r-times continuously differentiable functions.

Under (S3), we have
[a+in e ar <c, (22)

where C is a positive constant. We have () jezV; ={0} and, furthermore, if ¢ = L,(R) and
f ¢ =1,Ly(R) =U ,ezV; and ¢ is called the scaling function of the multiresolution

analysis (V;) jez. From (7.1.23) of Daubechies (1992), we can choose # as large as we want.

In addition to (S3), we will assume that

(84). ¢ is compactly supported in an interval [— A + A].
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Under these conditions, define the space W, by V; @W; There exists a function ¢ (the

‘mother wavelet’) such that:

(W1). {¢(x—k): k=Z} is an orthonormal basis of Wy;
(W2). {¢; ./, k=Z} is an orthonormal basis of L,(R);

(W3). ¢ has the same regularity properties as @.

In addition, we have the decomposition

LZ(R) = Vi@ W/@ Wi (‘B

f= éao,k¢z',k+ ;0 gzﬁj.kﬁbj.kr

That is, for all f €L,(R),

where

aon = [ ) o i@dx, Bix = [ Rx) 9, Hdx.

2.2. Besov spaces

We give here the definition of Besov spaces in terms of wavelet coefficients. For the
properties of Besov spaces,

Let » >s, let E; be the associated projection operator onto V; and D; = Ej;i; —F,.
Besov spaces depend on three parameters s =1,1<p<c0 and 1<¢<oo and are denoted By,

Say that f €B, if and only if the norm
is i/
Tl = ||E0ﬁ|LM)+{ ;(21 [IDAl L,,(R))q} RES
(with usual modification for ¢ = o). Using now the decomposition of f:
Ejf = ;Za;‘,k Pi ks
D, f = éﬁj,k &i ks
we may say that f €By, if and only if the equivalent norm
— As+1/2—1/p) q) /e
Tl D =1la,. I, +{1§(2 ||Bj-”l,,)} (oo
[we have set |lag.ll,=( @aovklp)w and ||8;.11,,=( Eﬁj,kmw]. Abusing the notation

slightly, we will also write |8 |y, for the above sequence norm applied to coefficients. Set
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also By(M) ={a: I8 114, M.
One may want to refer to Devore and Popov (1988) and Donoho, Johnstone, Kerkyacharian
and Picard (1996). Well-known cases of the Besov spaces, which are used in statistical

literature, include the Hilbert-Sobolev spaces H° = Bgy, the set of bounded s-Lipschitz

functions B wew With non-integer s. The function spaces considered in Fan and Truong

(1993) and Koo and Lee (1998) are particular cases of the Besov spaces.
3. Linear wavelet estimators

In this section, we define the linear wavelet regression estimators and state asymptotic
results of the proposed estimators.

3.1 Notations

Let 7(x)=pu(x)Ax)= ffXU(x, u)du where fyy and f are the joint density function of

(X, U) and the marginal density function of X, respectively.

From now on, it is assumed that X takes values in the interval I,=[—a,1+a] for a

positive constant a. We consider functions on the interval I =[0,1]. For approximation on

I, we need only the wavelets ¢;, which do not vanish identically on I We let K; denote
the sets of % for which ¢;, which do not vanish identically on I Let us assume that the

wavelet basis is derived from {¢;; 1k €K}.

3.2. Estimator of the marginal density

For the estimation of a density function, we will consider the following class of linear
wavelet density estimators. Let E denote the kernel associated with a projection on the space

V, of a multiresolution analysis associated with a wavelet:

E(x,y) = éco(ah k) o(y—Fk).

Let us put Efx,y =2'E(2x,2y) and EAx) =fE(x,y)f(y)dy. Let EX(x) be the

estimator of f at the level j based on X,,'s:
Ef (0= [E(xvdF, ()= 3 2E@x2X,)

where F, is the empirical cumulative distribution function based on X,,’s. We can express
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the estimator Ef(x), which is a linear density estimator, as follows. A linear wavelet density

estimate has the form

f(x) =25’;‘,k @j,k(x>-

Since the variables X,...,X, are @ ;& can be replaced by an estimator using the Fourler
transform and the relation
DAt =0x (D)D),
which follows from the independence of X and W
To develop upper bounds, we assume that

(Al). Oy(t) #+ 0 for any &

Let a;; = f¢j_k(x)f(x) dx from now on. It can be seen that

Air = f¢] k(t) ¢:;<(g (3.1)

Here the relation (3.1) is interpreted as a formal relation. Let
DD =n! Zlexp(z'tYm).
From (3.1},

@ =5 [ 20D g;’fg t

is an unbiased estimators of @; Let the transform K’ of a function % be defined by

(th)(y)——Re[f ’“—oﬁ%t%dt] yeR (3.2)

where Re[£] denotes the real part of a complex number & Then it follows from (2.1) and
(3.2) that

2 =L S (K0, LY.

Given @;, we can estimate f by fX = Zaf ik P ke

3.3. Estimator of regression function

Define
Oyl )= EUe™
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and let f; ,= vfg!l,—,k(x)f(x)dx from now on. Then we have that

Bj,kEf¢j,k(x)f(x)dx= f¢j,k(x)7(x)dx-

Let us note that

__1l [ Dz(D)
Here the relation (3.3) is also interpreted as a formal relation.
Let
Gl =n"" 3 Unexp(itY,,)
From (3.3)

)
Biw =5 [ 2540 @L:E(t) dt (3.4)
is unbiased estimators of £, By (2.1) and (3.4), we have
Bix =1 3 (K, LY,)Z,

Now we propose an estimator of u by

* ZkEK@]ng]k

ZkeKﬂ’;k%k

7 (3.5)

Then (35) can be interpreted as ,u* =y / f*, where 7'* =Z;$j,k ¢, and
f*=;aj,k¢;,k-
3.4 Asymptotic properties

In this section, we state asymptotic results for the estimator described above. In order to
derive rates of convergence of /Al we assume the following conditions in addition to (Al). Let

E and V denote the expectation and variance.

(A2). There is a positive constant M, such that Ml‘lsf(x)le for xe 1,

(A3). ¢*(x) <M, for x I, where *(x) = V(Z|X = x) is the conditional variance of Z

given X = x;

(AD). |Ow(D| =M3(1+1¢]) "¢ for a nonnegative number d
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(A5). r>d+ 1.

Remark 3.1. There are two examples of the conditional distribution of U given X = x

satisfying (A3): (i) Normal distribution with mean u(x) and finite variance ¢*(x), and (ii)

Poisson distribution with finite u(x).

Remark 3.2. The contaminating error W is said to be ordinary smooth of order daccording
to Fan and Truong (1993). Ordinary smooth distributions include gamma and double
exponential distributions. The order d determines the rate of convergence. The larger d
becomes, the harder is the problem of estimating the regression function

Remark 3.3. The condition (A5) is necessary for the formal definition in (3.2) and (3.5).

Now we state the main results whose proofs are given in Section 4. Let J denote the
number of elements in the set K, It can be noted that J < 2j, where for two sequences of
positive numbers a, = b, means that C ! < a,/b, < C

The following theorem gives an upper bound on the L, rate of convergence for the

estimator 2: We can note that the rate of convergence depends on the smoothness s of f

and 7 in addition to the smoothness d of the error distribution.

Theorem 1 Under (A1)-(A5), if f and 7 belong to B (M) with s> 1/2, p=2 and
g = 1, then

”#*__#”2 - O,,(n —s/(25+2d+1))

for ]x nl/(2s+2a’+1).

4. Proofs

In this section, we provide the proofs of the asymptotic results presented in Section 3.
Using the characterization of Besov spaces and the Sobolev embeddings, it can be
seen that

Sup xe]a‘f(x)l = C, sup xe],,l?’(x)l <C (41)
and

NES=Ale= O ), IEjy—Ala= 0. (4.2)

Let g be the density function of Y which is given by f F(y—x)dF w(x). Since the
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convolution operator 1s an averaging operator, we have that

leyl<C
by (4.1)

Since @, ,=E(K'¢) ; {Y) we have, by Parseval's identity,

Bt 4= 00" = -5 V(K'9), /(1)
<L 1K 9), ) ey
= L [ 1K) 1%((v+ B/2)ay

<& f!(K"qo)(y)l?dy

_ C
-l l e 'd’
It follows from (A5) that

10278 — 1= O(J(1+14))

and

[+ e iPa = o).

Therefore, we can obtain

2 (@)’ = 0p(J* n). (43)

Let %(x)=E(U*X=x). Since & and g are bounded on I,,

?(x) is bounded for
x € I, By independence of W and (X, U), we have

E(Bia— 80" =5 B|(K ), X+ W)'EX)

< —;11 sup () E| (K 9); « Y)Iz

o(J /| n)
V@s+2d+D 1 follows from (4.2) and (4.3) that
WF— I3 < 207— Ef5 + 2IEf— £II3

O( /;(,-( @ a;, k)2> +07%)

= 0p (J**n) + O(J7%)
= Op (n—2s/(2$+2d+1))

Now choose [J such that J <X »n

(4.4)
Similarly, we have



88 Woo-Chul Kim and Ja-Yong Koo

ly*—=7ll; = 0p(n TY@sradil (45)

By Taylor expansion, we have
== YA+ =) T
= = n—fw(F* =0
—f T =)

+ L& r g (46)
where €< W& — #)]. It follows from (4.4) and (4.5) that
A=Al = O(“f*_/ﬂoo) = O(fl/zﬂf**ﬂlz) = o0p(1) (4.7)
and
1777 =l = O(ll7™ = Ales) = Ol 7™ = l2) = 04(1) (4.8

Combining (4.6)-(4.8), we get that

™ = plly = (1 + 0p(1) OUlY™* — 71l + 117~ ~ £l
By (44) and (45) we have the desired result.

References

[1] Bickel, P. J. and Ritov, Y. (1987). Efficient estimation in the errors invariables model. The
Annals of Statistics, 15, 513-540.

[2] Carroll, R. J., Ruppert, D. and Stefanski, L. A. (1995). Measurement Error in Nonlinear
Models. Chapman and Hall, London.

[3] Daubechies, 1. (1992). Ten Lectures on Wavelets. SIAM, Philadelphia.

[4] DeVore, R. and Popov, V. (1988). Interpolation of Besov spaces. American  Mathematical
Society. 305, 397-414.

[5] Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation via wavelet shrinkage.
Boimetrika, 81, 425-455.

[6] Donoho, D. L. Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1996). Density
estimation by wavelet thresholding. The Annais of Statistics, 24, 508-539.

[7) Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution
problems. The Annals of Statistics, 19, 1257-1272.

[8] Fan, J. and Koo, J. -Y. (1999). Wavelet deconvolution. Manuscript.

[9] Fan, J. and Truong, Y. K. (1993). Nonparametric regression with errors in variables. The
Annals of Statistics, 21, 1900-1925.

[10] Fuller, W. A. (1987). Measurement Error Models. (Wiley, New York).

[11] Koo, J. -Y. and Kim, W. -C. (1996). Wavelet density estimation by approximation of
log-densities. Statistics and Probability Letters, 26, 271-278.



Wavelet Regression with Errors in Variables 859

[12] Koo, J. ~Y. and Lee, K. -W. (1998). B-spline estimation of regression functions with
errors in variable. Statistics and Probability Letters, 40, 57-66.

[13] Stefanski, L. A. (1985). The effects of measurement error on parameter estimation.
Biometrika, 74, 385-391.

[14] Stefanski, L. A. and Carroll, R. J. (1985). Covariate measurement error in logistic
regression. The Annals of Statistics, 13,1335-1351.

[15) Stefanski, L. A. and Carroll, R. J. (1991). Deconvolution-based score tests in measurement
error models. The Annals of Statistics, 19, 249-259,



