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Abstract

This paper discusses an optimal burn-in procedure to minimize total costs based on the
assumption that the failure rate pattern follows a bimodal mixed Weibull distribution. The
procedure will consider warranty period as a factor of the total expected burmn-in cost. A
cost model is formulated to find the optimal burn-in time that minimizes the expected
burn-in cost. Conditional reliability for warranty period will be discussed. An illustrative
example is included to show how to use the cost model in practice.

1. Introduction

Burm-in is described by the AT&T  Reliability Manual (1990) as one effective method of
screening using two types of stress, temperature and electrical stresses. For each
product/component, there is an optimum burm-in time period. If we burn-in for shorter than
optimum, the extra field repair/replace costs are greater than the savings in burn-in costs. If we
burn-in for a period longer than optimum, the extra burn-in costs exceed the savings from field
repair/replace costs. Therefore, finding optimal burn-in time is very important to save costs,

In the past, mixture distribution models have been suggested to describe the failure patterns of
electrical and micro-electrical components. Kao (1959) introduced a bimodal mixed Weibull
distribution to describe the failure time of electronic tubes. Subsequently, many researchers (see,
Stitch (1975), Reynolds & Stevens (1978), Boardman & Colvert (1978)) have found that failure rate
patterns of many components/devices follow a mixed Weibull distribution law. Recently, Block, Mi
and Savits (1993) investigated a general mixture model to determine
the optimal burn-in time. Spizzichino (1995) discussed another model for mixtures in heterogeneous
that was related to burn-in. Block and Savits (1997) gave an excellent review of bum-in for
mixture models. In this paper, we present an optimal burn-in procedure under warranty using the
bimodal mixed Weibull distribution.
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2. Bimodal Mixed Weibull Distribution

A bimodal mixed distribution is composed of two cumulative density functions (CDF). Let
F,(t) be the CDF of weak population, Fy(¢ ) be the CDF of strong population and F(¢) be
the total CDF for the entire population. Then, F(¢ ) is constructed by taking a weighted average
of the CDFs for the weak and strong populations. The weights are the proportions of each type of
subpopulation. Thus, if the weak population has p proportion and the strong population has
(1—p ) proportion, then

F(H)=pF,(t )+ (1 —p ), (¢). (1)

Typically, F1(¢ ) has a high probability of failing early while Fy(# ) has a low early failure rate

that either stays constant or increases very late in life.
Assume that f{t) is the probability density function (pdf) for F,(¢),i=1,2. Then, the

failure rate of the two-mixed distribution is expressed as

pfi+ (1= pfH30D)
1—{pF(H +(1—pF:(D}

nhH= 2)

where h(t) is interpreted as the instantaneous failure rate at time ¢ .
Now, let us consider the two-mixed Weibull distribution with two parameters for each
population. From the equation (1), the CDF of the two-mixed Weibull distribution is

F(H=1—plexpl — (& 7)) *1 — (1 — p)expl — (#/7) *]) 3)

where
B, : shape parameter of the weak population,

B> : shape parameter of the main population,
71 - scale parameter of the weak population,
79 scale parameter of the main population,

P+ proportion of the weak population.

The two-mixed Weibull distribution will be used to formulate the cost model.
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2.1. Time Dependent Conditional Reliability

The explicit treatment of early failures or wear effects reguires time dependent conditional
reliability modeling. In this situation, the reliability of a component or system becomes a strong
function of its age. In a conditional reliability model, we consider the effect of the accumulated

operating time { on the probability that a system can survive for an additional time x .
Suppose that we define R(x| ¢ ) as the reliability of a system that has previously been

operated for a time ¢ The conditional reliability under the given condition of ¢ is

_ _ K )
Rix| t)=P(X dx+t| X >H= Pif(()g’gj)” @)

where

X=x+1t1is the time elapsed at failure since the system was new and P(X)x+t) =

R(x+t ) is the probability that a device or system will operate for x+ ¢ time without a failure.

When the times are exponentially distributed, conditional reliability is just a simple exponential
calculation as follows

exp[ —A(x+ 9]
expl — At

= exp[ — A4]. 5

Since the reliability of a new system is just R(x)=R(x|t=0 )=P(X>t), we obtain
R(x|t)=R(x+t)/R(¢). Finally, the conditional reliability function can be expressed in terms

x+t
of the hazard function as R(x| ¢ )=exp(— f , h(wdu ) We may interpret the above ¢ as

the duration of past usage (which may include physical “wear”), and x as a future period of
interest (regarding a reliability prediction). In other cases, this “time” variable may be replaced by
the load condition which the device or system has experienced. The reliability of such a device
depends on the result of the cumulative load applied over the total previous history of the device.

3. Cost Model under Warranty

The proposal for an optimal burn-in procedure assumes that the failure pattermn of components
follows the bimodal mixed Weibull distribution. It is further assumed that the probability of the
occurring failures in any components during the warranty period is negligible. Using the formulated
cost model, we determine the optimum burn-in time such that the total cost for burm-in under
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warranty 1s minimized.
Notation

p . probability that a component is initially bad.

D¢ probability that an initially strong (good) component survives burn-irn.

pp © probability that an initially bad (weak) component survives burmn-in. This event can occur
when the burn-in time is too short or the accelerated conditions are not severe enough.

Cg : bum-in cost for a component.

Cer @ cost when a strong component fails burn. The cost includes replacement cost and loosing

the value of a strong component. This cost occurs when accelerated conditions are too severe
and/or the burn-in time is too long under accelerated conditions.
Cpp © cost when a bad component passes burn-in. The cost is a repair/replace cost possibly

further downstream assembly.
Cpgr - cost when a bad component fails burn-in. This is the replacement cost.

Car © cost per component that survived the burn-in but failed during warranty period W, . The
cost is field failure cost or repair/replace cost in field.

W, : warranty period.

T : burn-in time.

R(W,| T ) : conditional reliability of a burned-in component during warranty period.

R(T ) : reliability of a component during burn-in.

N : number of components to be placed on burn-in.

Ny number of components that survives the burn-in. Ny=NXR(T ) .

In practice, components on test during burn-in will either fail or survive. Some will be from
the bad components while others will be from the good components. Table 1 shows the associated

probabilities.
Table 1. Probabilities during burn-in and warranty period.
Good components Bad components
Survive in burn-in (1—p e bbg
Fail in burn-in (1= )X1—p¢) p(1—pg)
Survive in warranty R(W,| T)
Fail in warranty 1-R(W,| T)
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In Table 1, ppp indicates the probability that a component survives the burn-in and was from the
weak portion of the components. Probability that components survived the burmn-in but failed
during warranty period W, is 1 —R(W,| T ).

Table 2 includes the cost function for the situations presented in Table 1. For a component that
survived the bum-in test and was from the good portion of the components, the total cost is the
cost for performing the test Cg.

Table 2. Cost function during burn-in and warranty period.

Good components Bad components
Survive in burn-in Cg Cg+ Cpgp
Fail in burn-in Cp+ Cer Cpg+ Cgr
Fail in warranty Car Car

Then, the total expected cost for bum-~in under warranty is given by

Cr= N{(1=9)pcCp+pp5(Cp+ Cpp)+(1=p N 1= )(Cp+ Ccr) )
6
+ (1 —pg N Cpt+ Cpp )} + Nyl (1= R(W, | T)ICar)

where

R(W,+ T)

po=expl~ (T /7,)%], pp=exp[— (T/7)" land R(W,| T )= R(t)

In equation (6), Ny= NR(T ). Therefore, the expected total cost in the equation (6) can be

expressed as

Cr=Np {expl — (T/7)*1}(Cpp+ Car— Cir )
+(1—p) {expl— (T/n )" I Car~ Cer)

—(p{expl— (W4 T/n)"1}+ (1 =5 ) {expl— (W+ T/9)*})Cur
+p(Cpr— Cor )+ Cort+ Cp) . (7

The optimal bum-in time is determined to minimize the total cost defined in equation (7). In the
next section, optimal burn-in procedure will be presented.
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4. Optimizing Expected Total Cost

The optimal burm-in time, 7", is determined by minimizing the expected total cost. Three
possible cases are considered.

If replacement and repair costs for components during burn-in are higher than field or

aC 9%C
downstream replacing and repair costs, 8—TT> () and 5 TZT C 0. Therefore, Cr is an increasing

function of 7 and concave. In this case, not to burm-in is the optimum.

+ If replacement and repair costs for components during bum-in are much lower than field or
downstream replacing and repair costs, the minimum total cost is obtained at the time that begins
useful failure rate region in the bathtub curve.

The nontrivial optimal burn-in time with the minimum expected burn-in costs could be

achieved by taking the first partial derivative of Cr as

oc; N(%(%)‘“ lexp[_(—g;—)ﬂl][p(cgp-F Car— Cae )]
&) ‘””exp[_ (%)B][ (1= HX(Car— Con)]
_Ti(L;Z)B‘_lexp{—(W‘T*f)ﬂ’][pc,qp]
__773( W,;T)"’lexp _(—”%T)Bz][u—p)cﬁ]). ®

For the bimodal mixed Exponential distribution, equation (8) becomes

exp[— (—,{—)][p( Cp+ Car— Cp)]+ exp[ - (—,/TZ—)][ (1- ) Car— Cer)]

= eXp[_(M)][pCAF]+eXp

a - (1,;—:-?)][ (1= H)Carl. ©

Then, the optimal bum-in time is defined using quasi newton method. We can also find the
optimal burn-in time from the cost model (equation (7)) directly.
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5. An IHlustrative Example

A numerical example from Jensen and Petersen (1982) is considered to discuss the optimal
bum-in procedure under warranty. A manufacturer receives a bath of 1000 CMOS transistors.
From the previous experience, they expect to find the proportion of the weak transistors in the

batch is p=10.05. Assume that the time-to-failure distribution of weak population is exponential

with an mean time to failure equals to 200 hours at a test temperature of 125°C. At the same
temperature, the mean time to failure of strong population is known to be around 100,000 hours.
Past investigation suggests that the time-to-failure distribution of the strong population is also
exponential.

Now, let us investigate this example further. Assume that we defined the following values of the
constraints and parameter values of the mixed population for the transistors are

~

p=0.05, B,=B,=1, 7,=200 hours, 7,= 100,000 hours,

and
Cp=$1.00, Cpr=182.00, Ccr=94.00, Cgr=$200, 00, Cr= $300, 00, N=1000.
Then, from equation (7)

Cr=1000(0.05{exp[ — (7/200)1}(498) + (0.95) { exp[ — ( 7/100000)]}(296)
—(0.05{ exp[ — (W;+ T/200)1} + (0.95) { exp[ — ( W,+ T/100000)1})(300) +4.9).

If W,;=50,000 hours, the expected total cost is

Cr=1000(24.9{exo | ~ (%5 )]} 281.2{ ex0] ~ (1657 ) )

- 1000(15{exp[—(—”Zg%)]}ﬂss{exp[—(—fﬁg—o)]}ﬂﬂ).

Table 3 shows the relation among bum-in times, total cost, and conditional reliability at warranty
period = 50,000 hours.
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Table 3. The relations among burn-in times, total cost and conditional reliability.

T Cr R(WIT)
100. 9203 . 5877
200. 3260 . 5949
300. -344 . 5994
400, -2530 . 6022
600. -4660 . 6049
800. -5443 . 6059
1000. -5732 . 6063
1500. -5886 . 6065
2000. -5898 . 6065
3000. -5899 . 6065
3450, -5900 . 6065

6. Conclusions

In practice, we often encounter the reliability situation with weak and strong subpopulations for

many components/systems. In this paper, an expected burn-in cost model was formulated to

determine the optimal burn-in time, 7", when components have warranty period. We also
formulated burn-in probability and cost models.

The optimal burn-in time is determined to minimize the total expected bum-in. The proposed
formulas will perform well as long as moderately accurate estimated parameter values are used.
The finding of this study can be used by a reliability engineer or analyst as a guide for planning
an optimal burn-in procedure for a process with mixed population for components/systems.
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