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Mixed Replacement Designs for Life Testing
with Interval Censoring!
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Abstract

The estimation of mean lifetimes in presence of interval censoring with mixed
replacement procedure are examined when the distributions of lifetimes are
exponential. It is assumed that, due to physical restrictions and/or economic
constraints, the number of failures is investigated only at several inspection times
during the lifetime test; thus there is interval censoring. Comparisons of mixed
replacement designs are made with those with and without replacement. The
maximum likelihood estimator is found in an implicit form. The Cramer-Rao lower
bound, which is the asymptotic variance of the estimator, is derived. The test
conditions for minimizing the Cramer-Rao lower bound and minimizing the test costs
within a desired width of the Cramer-Rao lower bound have been studied.

1. Introduction

With the development of reliability, a lot of time and cost are involved in the estimation of
lifetimes of products. In case of higher reliability products, especially, it may be impossible to
observe the lifetime in the wusual manner. Thus various methods such as censorings
(Boardman, 1973) and accelerated testings (Nelson, 1990) are introduced in lifetime tests. Life
testing procedures with interval censoring procedures can be divided into two classes: With
replacement - in which the failures are replaced at each inspection time and Without
replacement (Wei and Bau, 1987) - in which the failures are not replaced. In general, it is
well known that with replacement procedure has better accuracy than without replacement
one. In the with replacement procedure, however, one needs to prepare enough test items for
replacement of failures at each inspection time. It is difficult to adopt the with replacement
procedure in practice because one does not know exactly the number of items that will be
required during the total time of test, which could be excessively large.

The practical difficulties in the with replacement procedure have the following two sides.
First, the test may become too costly due to the overestimation of the number of failures. On
the other hand, test items may run out before predetermined test time if the failures are
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underestimated. In the latter case, the test itself is terminated before predetermined test time.

In this paper an interval censoring model with mixed replacement procedure is examined
which includes without replacement and with replacement procedure as its special cases. That
is, we adopt with replacement procedure at the beginning of the test, and adopt without
replacement one starting from the arbitrary but nonrandom inspection time. At first, we try to
find the estimator for mean lifetime with the mixed replacement procedure. Optimal test
designs for minimizing the asymptotic variance of the estimator and minimizing test cost with
the mixed replacement procedure are studied, subsequently.

2. Parameter Estimation

2.1 Mixed Replacement Model

An interval censoring model with mixed replacement procedure in this paper may be
described as follows. At first, »n test items are placed on lifetime test and failures are

observed at several arbitrary inspection times r;, j=1,--,I. At each inspection time, failures
are replaced by new ones till the arbitrary inspection time rx which runs out test items for

further replacement. The lifetime test is continued for the prespecified time 7T, so that

O:T0<T1<"'<TK<"'<Z'1:T.

Thus the mixed replacement procedure which is introduced in this paper can be the without
replacement procedure if K=0 and can be the with replacement one if K=/7—1.

Consider I test intervals 4;’s which have magnitude
di=r1,— 10, j=1,,1, 2.1
respectively.
Let the observed number of failures during the jth interval (2.1) be 7, and the number of
test items unfailed till the last inspection time 7; be 7;.;, then we have

Tre1 T FYgeg T trntra=n.

Test items #; which are placed at the beginning of the jth interval are all # 1 replaced

intervals and are reduced with failures after ( K+ 1)th inspection time, that is,
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n., 1</<K+1
n,-{

n - _=$+17’,', K+2$]£I

2.2 Maximum Likelihood Estimator

The lifetimes of test items are assumed to be exponentially and independently distributed
with density function

f(x):%exp(—%>, x>0, (

0o
to
=

where @ is an unknown positive parameter.
The likelihood function for @ in interval censoring with mixed replacement procedure can

be divided into two parts

L = Ll X LQ R (2.3)
where L, is likelihood for replaced intervals and L, is likelihood for intervals not replaced.
The probabilities that failures happen in replaced intervals, that is, the probability that 7,

failures are observed at the jth interval has the form of binomial distribution with parameters

n and 1— exp(—4;/8) given as follows;

iy (e %)) {ee(- %))

So the likelihood function for replaced intervals is described

= i (-5 )) feel -5 ))
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The likelihood function for intervals not replaced has the form of multinomial distribution
given as follows;

A
I

_n ¥ pr
”1\'+1! 71+1! ]:tl‘*lpj ’ (25)
where
—_1 - A
szexD(_L%){l_exp<_#)}, KL e

T — Tk
and P, = exp(—u) .

0

According to (2.4) and (2.5), the likelihood function for mixed replacement procedure (2.3)
becomes

n—7r,

- Bt bl ) ol ) et
L /Ij 7/]'! (n — 7’]‘)! {1 eXD( 4 eXp ] 7/1(+1! 7’]+1! I +1P, . (26)

Differentiating the log likelihood function with respect to 6, we get the first derivative

v;d;exp| —— : ‘ _
3g10L = _#Z‘l j + ;3 /Z(n—r,-)d,- + 013 /_Ziﬂr,-(r,,l —x) + J[’I(Zfﬁ() .27
L e )
Then the likelihood equation for estimating 6 can be derived from (2.7) as
A.
/Z'[ 4 . - NTg — ]=$+17’](Z']’_ Z'[()_ 7’1‘1(2'1— TK):‘O . (28)

1- exp(—?’ )

Though the above maximum likelihcod estimator has implicit form, it can be solved by using
iterative methods such as Newton-Raphson’s algorithm or EM algorithm suggested by
Dempster et al.(1977) and it can be shown that the solution is unique.
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2.3 Asymptotic Variance of the Estimator

As a prerequisite for the discussions provided in section 3 and 4, let us find the asymptotic
variance of estimator. The Cramer-Rao lower bound can be substituted for asymptotic

variance, considering the form of the estimator derived earlier.
From the first derivative, we get the second derivative

4.
2
5% L :_2_: ;4 1 2 rjdjexp(—j) _ 2nrg
36° ¢ /= 1—exp(—ﬁ) gt = {1_ (_é)]z 6’
0 P70
27 1 (7 —
-5 I_;ﬂ r(r,—tx) — ”1(;§ o) (2.9)

The expected value of 7; which is the observed number of failures during the jth interval
and of 7,4, which is the number of unfailed items till z;, is given as follows:

Av
n{l—exp(——#)}, ji=1, -, K
E(ry) = { T, — T Y|
nexp(——llg—-ﬁﬂl—exp(—j)}, j=K+1 I
E(rp) = nexp(——*—ﬁ;w )
Then, the Cramer-Rao lower bound of the estimator becomes
2 44 exp(— Liml — K TK) h
CRLB(8) = Ui f.‘. N S— + i ’ 0 (2.10)
n =1 A, J=K+1 Aj
exp(F) -1 exp(—0f> -1

3. Test Designs for Minimum Variance

We now derive the test conditions for minimizing the Cramer-Rao lower bound of the

maximum likelihood estimator and for minimizing the test costs in interval censoring with

mixed replacement procedure.
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3.1 Optimal Interval-Size

From the Cramer-Rao lower bound derived in section 2, it is evident that it is a function of
test items #, lifetime parameter @, jth interval-size 4;, the number of total intervals I,
and the number of replaced intervals K. An optimization of the test design, thus, means the
determination of 4; with respect to the various values of X given 7, ¢ and I for
minimizing the Cramer-Rao lower bound. Let us begin by assuming that all of intervals have
equal size 4.

The Cramer-Rao lower bound for the case which has all the interval-size equal can be
deduced from (2.10). It is given as follows;

s - Ly - PE I
Differentiating (3.1) with respect to 4, we get
GCRLB(B) _ 0" x
L T | R
[ 4§ {e0(F) - eo(=4 )] [5{1—ew(= )} + 1 = o= 574
~{eo( ) -2+ ew( =5 )} [26{1 = eno(= )} 21 - e~ H5EAY)
+ K4 exp(-4 )+ ML (- MERA) ] (32)

We can prove from (3.2) the optimal interval-size is unique since the second derivative can be
shown to be always positive.

Let ¢, the index of interval-size, be 4/6. Then (3.2) can be described as an expression

involving f:

[#{exp(d) — exp(— D} — 2{exp(d—2+exp(—}] [K{1—exp(—n}+1—exp(—(I- K]

— [exp(t) — 2+exp(— )] [Ktexp(—¢t) + U-K)texp(—(I-K))] =0, (3.3

where t= 4/0.
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The optimal indices can be solved by using the Newton-Raphson’s iterative method for
each pair of values I and K from 0 to 10 respectively. The results are shown in Table 1.

Table 1. Optimal Indices of Interval-Size

K
I 0 1 2 3 4 5 6 7 8 9
1 1.594
2 1.207  1.594
3 0990 1383 1.594
4 0.847 1267 1451 1.594
5 0.746 1200 1378 1486 1.594
6 0669 1174 1346 1434 1507 1.59%4
7 0.608 1.161 1333 1413 1467 1521 1.594
8 0559 1165 1329 1405 14561 1483 1532 1.594
9 0518 1.153 1327 1403 1446 1476 1504 1539 1.594
10 0483 1152 1327 1402 1445 1473 1494 1515 1545 1594

In the case of K=0, the optimal indices of interval-size decrease from 1.594 to 0.483 as the
total number of intervals [ increases. It is equivalent to the results of Nelson(1977) which
has studied the without replacement procedure. The optimal indices are all 1.594 in cases of
with replacement procedures, i.e., K=I7—1, regardless of the values of 7. We can see that ¢
increases as K increases under given /I, and increases as I decreases under given K.

3.2 Relative Information

One can compare the relative accuracy of interval censored data with mixed replacement
procedure to the complete data. From the Cramer-Rao lower bounds of interval censoring with
mixed replacement and that for continuous inspection without replacement, we get the
following ratio. It is defined as the relative information in Kulldorff(1961).

CRLB(Cont. without repl.) _ F [K{l1 — exp(=H}+1— exp{~(U~K)¢}]
CRLB(Mixed) {exp() — 2 + exp(— 0} {1 — exp(—18)}

(3.4)

Applying the optimal indices of interval-size given in Table 1, the relative information of
interval censoring with mixed replacement compared to the continuous model without
replacement has been derived. It is presented in Table 2.
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Table 2. Relative Information of Interval Censoring with Mixed Replacement Procedure to
Continuous Model Without Replacement Procedure

K
1 0 1 2 3 4 5 6 7 8 9
1 0.813
2 0.887 1.351
3 0922 1465 1.959
4 0.942 149 2090 2.595
5 0955 1505 2124 2731 3239
6 0964 1508 2133 2765 3376 3.886
7 0970 1509 2136 2773 3409 4022 4533
8 0974 1509 2137 2775 3417 4054 4669 5181
9 0978 1510 2137 2776 3419 4062 4700 5316 5829
10 0.981 1510 2137 2776 3419 4063 4707 5347 5963 6476

In case of without replacement, i.e., K=0, the relative informations of interval censoring are
increased from 0.813 to 0981 with the increase of I. With more than one replaced intervals,
relative informations are larger than those of continuous inspection cases.

Similarly, we can derive

CRLB(Cont. with vepl.) _ t{K{l —exp(=0}+ 1 — exp{—(7 — K)t}] (3.5)
CRLB(Mixed) I{exp() =2+ exp(— 1)} : '

Thus, we get the relative informations of interval censoring with mixed replacement compared
to the continuous inspection with replacement model.

Table 3. Relative Information of Interval Censoring with Mixed Replacement Procedure to
Continuous Model With Replacement Procedure

~
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It is reasonable that relative informations are decreasing with the increase of I. The relative
informations are increasing with the increase of K for the cases of I=4. When I=5, but,
relative informations decrease first and then increase with the increase of K. It can be in
part interpreted that the increasing effects of T are larger than those of K. When 7=7, for
example, relative informations decrease from 0.295 to 0.186 with the change of K from 0 to
1, since total test time T is increased from 4256 to 8127 which amounts to change in
optimal indices of interval-size from 0608 to 1.161. On the other hand, the relative
informations converge to 0406 with increase of K regardless of 1.

3.3 Sensitivity Analysis for Relative Information

Unknown parameter @ is involved in the index of interval-size ¢ as follows.

t=4/6 .

Table 4. Effects of Preestimates 6" to Relative Information of Interval Censoring with Mixed
Replacement Procedure

I=3 I=6 I=9
g K 0 2 0 3 5 0 3 6 8
% g 0.980 1.721 0.991 2.350 3.153 0.994 2,402 3.885 4.693
(106.3) (87.9) (102.8) (85.0) (81.1) (101.6) (86.5) (82.7) (80.5)
%—19 0.965 1.866 0.984 2,595 3.583 0.990 2.623 4.371 5.366

(104.7) (95.3) (102.1) (93.9) (92.2) (101.2) (94.5) (93.0) (92.1)

%6 0.955 1.913 0.979 2,674 3.723 0.988 2,693 4.524 5,580
(103.6) (97.7) (101.6) (96.7) (95.8) (101.0) (97.0) (96.3) (95.7)

0 0.922 1.959 0.964 2.765 3.886 0,978 2.776 4,700 5.829

% g 0.867 1.841 0.936 2.644 3.675 0.961 2.664 4.475 5.512
(94.0) (94.0) (97.1) (95.6) (94.6) (98.3) (96.0) (95.2) (94.6)
% 0 0.835 1.730 0.920 2.517 3.457 0.951 2.545 4.239 5.185

(90.6) (88.3) (95.4) (91.0) (89.0) (97.2) (91.7) (90.2) (89.0)

20 0.729 1.313 0.863 2.012 2.625 0.915 2.059 3.316 3.937
(79.1) (67.0) (89.5) (72.8) (67.6) (93.6) (74.2) (70.6) (67.5)

NOTE: Values within ( ) are percentages of relative informations with true value and preestimate of @
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We have to preestimate the parameter & for its application in determining interval-size 4.
For this reason, sensitivity analysis for relative information which takes into account
preestimation of & is needed. Results of sensitivity analvsis for the case of interval censoring

with mixed replacement procedure versus continuous model without replacement are shown in
Table 4.

We can see that the loss rates of relative information are increased with increase in the
ratio of replacement, even though absolute values of relative information are increased. The
preestimation-error within 33% results in maximum 7.9% loss of relative information
regardless of I and K. Therefore, it is concluded that the error in preestimation in the
determination of optimal interval-size does not have crucial effect on the interval censoring
with mixed replacement.

4. Test Designs for Minimum Cost

In this section test conditions for minimizing the test costs within a desired width of
Cramer-Rao lower bound are examined.

4.1 Cost Function and Optimal Solution
The following four components of test costs are assumed,

C; = the cost of placing an item on test,
C, = the cost of the test running for a unit time,
C. = the cost of test facility for a unit time,

C, = the cost of inspection.

Then the cost of interval censoring with mixed replacement procedure is
C=C,v(n+ ﬁ‘,r,-)+c,r+ Con+ Col. (4.1)
~

The total test time 7T in (4.1) can be described as
T=41I. (4.2)

The expected number of failures in replaced intervals becomes

E(g‘ir,-)=Kn{l— exp(—A)} . 4.3)

D
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From (4.2) and (4.3) the expected cost derived as a function of # and I is given as

Cn, I) = [cz-+ C, + K{l - exp(—

o

)}]n+(C,A+Cu)I. (4.4)
A constraint in this test can be assumed as
CRLB(9) < a*¢* ,

where @° is a constant for determining the width of Cramer-Rao lower bound.
Applying the Cramer-Rao lower bound derived in (3.1), we get

SYN

) =2+ exn(- 4 )

N - e - 504

We can formulate the following nonlinear minimizing problem from (4.4) and (4.5).

0 exp(
nd? K{l — exp(—

>

<dt & . (4.5)

SN

Minimize Cln, D) = [c,.+ C.+ K {1 - exp(—

SN

)}]n+(C,_/J+Cu)]

or 6 . ex;i%l— 2+ expL % ) -

4 K{l_exp(—%>}+{l_exp(— 1—9 A)} <

n .

Then the cost function could be solved using the general method for the nonlinear problem.
4.2 Example
Let us consider an example for finding the solution. WLOG in this purpose, let
0=200, a=0.05.
Assume K, the number of replaced intervals, be the half of I which is the number of total

intervals, even though K is not determined before the test. And let the four components of
test cost be all 10 and change each component to 100 by turns. The results of finding optimal

solutions are shown in Table 5 for the cases of various ¢.
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Table 5. Optimal » and I of Interval Censoring with Mixed Replacement Procedure

t C, C, C; C, K 1 n C(n,I) CRLB
0.67 10 10 10 10 2 243 10,497.3 99.64
100 10 10 10 3 189 27,816.9 99.72

10 100 10 10 3 189 27,816.9 99.72

10 10 100 10 0 851 30,430.0 99.92

10 10 10 100 2 243 10,857.3 99.64

0.8 10 10 10 10 383 11,090.9 100.00
173 27,365.0 99.51
173 27,365.0 99.51
766 31,330.0 100.00

383 11,2709 100.00

344 11,1175 99.90
158 21,7296 99.59
158 27,7296 99.59
633 33,770.0 99.90
344 11,2975 99.90

323 11,505.7 99.76
150 28,864.5 99.89
150 28,864.5 99.89
645 36,910.0 99.92
323 11,685.7 99.76

312 12,095.1 99.92
147 30,552.3 99.88
147 30,952.3 99.88
624 40,490.0 99.92
312 12,2751 99.92

309 12,806.0 99.94
147 32,471.1 99.95
147 32,471.1 99.95
618 44,170.0 99.94
309 12,986.0 99.94
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We can see that #n is decreased and [ is increased when C; or C, is large. Similarly, =

is increased and I is decreased when C, is large. On the other hand, the change of 4 has
no crucial effect on optimal solution. It means that there are a lot of flexibilities for
interval-size in this test procedure.

For comparison purpose, we can find the optimal solutions in cases of K=0 and K=17-1
as shown in Table 6 and Table 7 respectively.
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Table 6. Optimal Solutions of Without Replacement Procedure

c. ¢ ¢ C, t K I 7 C(n,I)  CRLB
10 10 10 10 121 0 2 4% 147800  99.86
00 10 10 10 067 0 6 423 546300 9995
10 100 10 10 067 0 6 423 546300 9995
10 10 100 10 159 0 1 618 441700 9994
0 10 10 100 121 0 2 49 149600  99.86

Table 7. Optimal Solutions of With Replacement Procedure

C; C, C, C, t K 1 n C(n,I) CRLB
10 10 10 10 1.59 1 2 309 12,806.0 99.94
100 10 10 10 1.59 4 5 124 29,9849 99.62
10 100 10 10 1.59 4 5 124 29,9849 99.62
10 10 100 10 1.59 0 1 6518 44,170.0 99.94
10 10 10 100 159 1 2 309 12,986.0 99.94

—

From Table 5 and Table 6, we can know that the costs of the mixed replacement procedure
are always lower than those of the without replacement procedure. And comparing Table 5
and Table 7, the costs of the mixed replacement procedure are always better than the with
replacement procedure if #{<1.2, and partially better if t=1.4.

In the case which has 10, 100, 10 and 10 as the four components of test costs respectively,

for example, comparisons of the minimum costs in three different replacement procedures are
described in Table 8.

Table 8. Comparisons of Optimal Solutions in Three Different Replacement Procedures

¢ (OF C, C, C, K 1 n C{n,I) CRLB
0.67 10 100 10 10 0 6 423 24,630.0 99.95
0.67 10 100 10 10 3 5) 189 27,8169 99.72
0.8 10 100 10 10 3 5 173 27,365.0 99.61
1.0 10 100 10 10 3 5 158 27,729.6 99.59
1.2 10 100 10 10 3 o 150 28,864.5 99.89
1.4 10 100 10 10 3 5 147 30,952.3 99.88
1.59 10 100 10 10 3 5) 147 32,471.1 99.95
1.59 10 100 10 10 4 5 124 29,984.9 99.62

The minimum costs of the without replacement procedure and that with replacement one are
54,630.0 and 29,984.9, respectively. The minimum costs of the mixed replacement procedure are
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distributed from 27,365.0 to 32,471.1 according to the value of f. So, we can expect that the
interval censoring with mixed replacement procedure has advantages in terms of test costs as
well as test convenience.

5. Summary

The mixed replacement procedure studied in this paper can be useful in practical life testing
because it is a very flexible test scheme. As a special case, it can be a without replacement
procedure or a with replacement one. The maximum likelihood estimator is obtainable. The
Cramer-Rao lower bound is derived instead of variance, considering the implicit form of
estimator. The optimal indices of interval-size for minimizing the Cramer-Rao lower bound of
estimator are derived in the cases for various pairs of values for I and K. The results of
Nelson(1977) which has studied the without replacement procedure are included as special
cases of this mixed replacement one. The relative informations of the interval censoring with
mixed replacement to the continuous models with and without replacement are examined.
Through the sensitivity analysis for relative information, it is shown that the
preestimation-error in the determination of the optimal interval-size does not have crucial
effect on the test. The optimal magnitudes of # and I for minimizing the test costs within
a desired width of Cramer-Rao lower bound are analyzed. Through a general example, it is
shown that the test costs of the mixed replacement procedure are always lower than those of
the without replacement one and are partially better than the with replacement one. Finally, it
is reemphasized that the interval censoring with mixed replacement procedure has advantages
in terms of test costs as well as test flexibility and convenience.
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