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Block Replacement Policy by Multiple Choice with Used Items

Hai Sung Jeong!

Abstract

A block replacement policy where at failure the item is either replaced by a new or
used item or remains inactive until the next planned replacement is considered. In this
paper, our interests are focused on reusing all the used items created by the policy.
Numerical results for the case where the underlying life distribution is gamma are
obtained.

1. Introduction

Under the standard block replacement policy(BRP), items are replaced preventively by new
ones at time £7, k=1,2,- and at failure (Barlow and Proschan (1965)). This policy is
rather wasteful, since sometimes almost new items are replaced at time k7, £2=1,2,--. To

overcome this undesirable feature, standard BRP has been improved in several ways. Cox
(1962) developed and Blanning(1965) corrected the policy to remain inactive if a failure occurs

in [ kT — &8, £T) for any %k and for some . Bhat (1969) proposed replacing the failed item
with a used one, which has been removed earlier after attaining the age 7. Mixed
modification have also been suggested. Tango (1978) suggested the policy in which if items
fail in [ (B—1)T, kT — §), they are replaced by new items, and if in [ £T — &, £7), they are
replaced by used items of age 7. Murthy and Nguyen (1982) modified the Tango’s policy so
as to make use of all used items created by the policy. Kadi and Cleroux (1988) subdivided
the interval [ (£—1)T, kT ) into three parts [ (k—1)T, kT — &), [ kT~ 6, kT — 8,) and

[ kT — &, £T), and suggested replacing failed items by new ones if the failure occurs in the

first subinterval and by used ones of age T if it occurs in the second one and remaining
inactive in the last one. Modified BRP (in which a item is replaced on failure and preventively
at time kT, k=1,2, -, if its age exceeds & for some b) is proposed by Berg and Epstein
(1976). Lately, Archibald and Dekker (1996) extends the modified BRP of Berg and Epstein
(1976) to the case of multi-component systems with discrete life time distribution.

Kadi and Cleroux’s policy creates used items of age varying from &, to 7. However it

uses only used items of age 7T and discards used items of age less than 7. This is not a
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rational policy. In this paper we extend the Kadi and Cleroux’s policy to the case where

failed items in [ kT — &8,, kT — &,) are replaced by used ones with age varying from &; to

T. as opposed to replacement by used ones of age T only.

2. Replacement Policy

The policy is defined in the following way:
(1) Items are exchanged for new items at 27T, k=1,2, .
(2) If items fail in [ (A— 1T, kT — &;) ,0< 8, < T o, they are replaced by new ones.
(3) If items fail in [ AT — &y, BT — &y) ,0<68,< 6, < T< o, they are replaced by used ones
created by this policy.
(4) If items fail in [ AT — &, kT), they remains inactive until the next planned replacement at
kT.

The parameter 7,8, and 8, are unknown parameters which determine the replacement
policy. We use the same assumptions as in Kadi and Cléroux's policy, ie. (i) the lifetime
distribution of new items is continuous and has an increasing failure rate, (ii) failures are
instantly detected, (iii) preventive replacement and replacement at failure are made instantly,
(iv) the number of new and used items available for replacement is sufficient to avoid

shortages, (v) no item is used more than twice, (vi) used items will cost less than new items,
(vii) the preventive replacement cost is less than the cost of replacement at failure.

3. Formulations and Analysis

For a fixed time ¢ let N;( denote the number of failure replacements by new items
during [0, #1 and N,(#) denote the number of preventive replacements during [0, #]. Then
N,(H+ No(D) represents the number of replacements by new items during [0, #]. Furthermore

let N3( denote the number of replacements by used items during [0, #1 and D denote the

length of inactivity period during [0, #]. By using arguments similar to Kadi and Cleroux
(1988), the expected cost per unit time for an infinite time span is given by

EIN, (D] N EIN, (9] + E[N; (9] + o E[D]}

C( T, 81, (5\2) = 1[11;2{ 4] P Cy t C3 + ;

where

¢, = cost suffered for each failure replacement by a new item,
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¢y = cost suffered for each preventive replacement,

c5 = cost suffered for each failure replacement by a used item,

¢y = cost suffered for each time unit of inactivity.

From classical results of renewal theory (see, for example Barlow and Proschan (1965)), we
have

o BN OT _ M(T—6) i BN (D] 1
patt t T P t T

(=]

where M(¢) = ZIF (4 is the renewal function corresponding to the renewal process of
=

new items and F™(§) is the n-fold convolution of F(#), failure time distribution of new

items. Let m(f) = dM(£)/dt be the renewal density of this process.

3.1 Computation of lti{glo EIN;(9)]/t

The failure time distribution of used items is a function of F(f, T and &,. Let
Fy(t| T, 8;) be the failure time distribution of used items. Fy(¢|T, 8,) can be derived as
follows. A used item of age ( 8; + x ) is created in a cycle if it starts operating at time 7 -
(8, + x) where x (0, T— &) and survive until time 7. Thus the probability that a used

item of age (8, + x ) is created in a cycle is given by

[1 —F(8 +x0]dM(T— 6, —x) for 0<{x<{T— 4y,
dG(x| T, 8,) =
1—-F(T) for x= T~ 9.

T_

)
The probability that a used item is created is easily seen to be fo dG(x| T, ¢8,).

The failure time distribution of a used item of age ( 8; + x ) is easily seen to be F 4. ,(f)

= {F(8,+x+ D — F(8 + x)}/{1l — F(8; + x)}. Therefore, Fy,(t|T,8;) is obtained as

=8¢ F(8, + x+ O — F(8; + %)
— dG(x| T, 6,)
FAHUT 8) = j(; { 1 T{?(S(l@l‘i—x) l 1

fo dG(x| T, 8,)
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T— 8
F(T+ - F(T) + fo {F(& + x+ D — F(6, + %)} dM(T— 8, — x)

T-6,
1— F(T) + fo {1 — F(3, + x)}dM(T— 8, — %)

To evaluate the expected number of replacement by used items in the [ T— &), T— &y ),
we note that replacement in this interval can be viewed as a modified renewal process with
the first item in this interval having a fallure distribution function ®¥(x), =xe
[ T— 6, T— 38, ) and subsequent items having a failure distribution Fy(¢t17T,é8;). d¥(x)

(the probability of failure between x and x+ dx where x= [ T— 8, T— &) can be
derived as follows.

If we let E; and E, be the independent and mutually exclusive events defined by £, =
{the new item installed at time ¢ = O fails for the first time between «x and x + dx where
x [T—6,, T— 6 )}, E, = {the last renewal occurred between y and v+ dy where
vel[0, T— 8)) and the new item installed at that time fails between x and x + dx , where

x€ [ T— 6, T— &, )}, then we have d¥(x) = P(E,) + P(E,), where P(E,) = Ax)dx

-3,
and P(E,) = fo m(y)Ax— y)dvdx. Thus, the expected number of used items needed per

cycle is given by Mp(T, 8, &), ie.

T—

8,
MAT, 0. 0)= [ 1+ MAT—8,~xIT, 8))a%(x)

T-6

— fT_;u + M T—8,— x| T, 8))Ax)dx

T-8
+

where M (t| T, 8,) is the renewal function for a renewal process with failure time
distribution Fy(t| T, 8)).

Hence we have

T-08,
[ 0+ MAT= 8= x| T, 8))m(n)Ax~y)dxay,

. EINy(B]  Mp(T, 6y, 9,)
lim = .
oo ¢ T
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3.2 Computation of ltlrgl0 E[D]/¢t

We have

I ElD] _ L(T, 61, &)
Pt T ’

where L(T, 8, 8,) is the average duration of the inactivity period in [T — &, T). If x is

the instant of failure in [ 7 — &, T) then the number of time units of inactivity is equal to

T - x. Therefore
T
L(T, 8, &) = [ (T—0¢(xax,

where @(x)dx is the probability of a failure between x and x + dx where x& [T— 6, T).

In order to obtain @(x)dx we consider the following independent events: For xe&
[(T—6,,T), y€(0,T—08 ), velT—8,T—8 ) and {0, T— 35— v],

&
1

{the new item installed at time ¢ = O fails for the first time between x and x -+ dx}

E, = {a renewal occurs between y and y+ dy}

Es; = {the new item installed at time y fails between x and x+ dx}

E; = {the new item installed at time ¢ = 0 fails between v and v+ dv}
E; = {the new item installed at time v fails between x and x + dx}

Eg = {the new item installed at time y fails between v and v+ dv}

E; = {a renewal with a used item occurs between v+ % and v+ u+ du}

Eo= {the used item installed at time v+ # fails between x and x + dx}

The event {a failure occurs between x and x + dx where x= [T — &y, T)} is the union of

the following mutually exclusive scenarios:

Syt Es

Sy: E4 followed by Ejs

Sy Eg followed by E;

Sy: E4 followed by E; followed by E;

Ss: E¢ followed by Ey followed by £y

Sg: E; followed by Eg followed by Ey followed by Ej
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and therefore ¢(x)dx = g:lP(S,-), where
P(S)) = Ax)dx

T8

S, = fo m(y)Ax— y)dydx

T—

X
P(S;) = f Avfix — v)dvdx

T—46

T-8 T—8&

P(Sy = fo fr—al m(NAv—y) filx — v)dvdy dx
T-8 ~T—8

P(Ss) = fr—a fv Avymfu—v) fi{x — wdudv dx

T—8, ~T-8 ~T—34
P(Sg) = f’r—a fv fo m(Av—y) mu—v) fiI{x — u)dvdudv dx

Combining these results we finally obtain

T-6

1 73,
#x) = 0+ [ mRx—dy + [ Aflx — o
T-8, T—8
" fo fT—al m(MAv—y) fi{x — v)dvdy
T8 ~T—0
* fr—a .fv Avym{u—v) fi{x — wdudv

T—68 ~T—6 ~T—6
’ fT—al f fo m(»Av—y) mu—v) fi{x — wdydudv

v

The problem is thus to minimize

C(T. 81, 8) = S[aM(T—8) + ¢+ M T,81,8) + ,L(T, 6y, )]
with respect to T, 8;, 8, under the constraints &8, >0, 8,>0, §;, =8, ,0<T<c0, T— 6, 20.
3.3 Special Cases

This policy can be regarded as the generalization for the special cases summarized in the
Table 1.
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Table 1 Special cases of our policy

I Case Cost Function Description J
1 standard BRP. Barlow and
= 6 = —_
8 =8=0 C(T,0,0) = FlaM(D) + c] e 1565)
a item 1is replaced preventively
0, =0, =T T, T, T = LT[CZ + (T, T, D] \at time £T, k=1,2,- and

remains inactive at failure.
a item is replaced preventively

at time kT, k=1,2,--, if
fails in [ (k—1)T, kT — 8y,
it 1s replaced by a new item,
and if in [AT— 6y, #T), it
remains inactive. Cox (1962),

Blanning (1965)
a item is replaced preventively

at time k7T, £=1,2, - and

replaced by a used item at

(T, 8,,8,) = LT[ e M(T—8) + ¢,
+ C4L( T, 32, 62)]

0(61=82<T

& =T,8=0 |CT T,0)=LT[c2+c3MD(T,T,0)]

failure,
la item is replaced preventively

at time kT, k=12, if
fails in [ (B—1)T, kT — &),
it is replaced by a new item,|
and if in [ BT — &, £T), it is
replaced by a used item.
Murthy and Nguven (1982) |

C(T, 8,,0) = [ cM(T—8) + ¢,
+ CgMD( T,810)]

0< 8, KT, 8, =0

4. Comparison and Numerical Solution of the Model

To compare this policy with Kadi and Cleroux's policy, we note that the failure time
distribution of used items in our policy is given by Fy,(t|T, 6;) while that in Kadi and
Cleroux’'s policy is given by F 7(¢t|T) = {(F(T+ 8 — F(T)}/{1 — F(T)}. Thus for Kadi

and Cleroux's policy the expected number of used items per cycle is given by
T8,

M(T, 8, 8) = [ (1+M{(T~8—x T))d¥x),

where M {t|T) is the renewal function for a renewal process with failure time distribution
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Fr(t|T). Since F(t) has an increasing failure rate, it follows that F,(¢|T, 8) <
Fr(t1T) and M (¢ T, 6)) < M(¢t|T). Therefore M (T, &, &) < Mi(T, &, &), ie. for
the same T, 8, and &,, the expected number of used items per cycle for our policy is smaller
than that of Kadi and Cleroux’s policy. Thus for the same 7T, 81 and &,, the expected cost

per unit of time for our policy is smaller than that of Kadi and Cleroux’s policy. As a result,
our policy is always better than Kadi and Cleroux’s policy.

The optimal policy for our model is given by T 7, 6] and &5 which minimize

C(T,8,,68). And T7, 8 and & can be obtained by solving dC(T, &, 8)/0T = 0,
oC(T, 8, 8)/38, = 0 and dC(T, 8y, 85)/38; = 0. In general one cannot obtain an explicit
analytical form for these equations since the renewal functions M(#H) and M £ and the
renewal densities m(#) and m () cannot be explicitly written. Thus a computational scheme
is needed to obtain the solution. We shall now consider a situation in which F(# is given by
a gamma distribution of order 2 with parameter A, that is, F(£) = 1- (14+Ade " for =0
‘and A>0. In this case M) =At/2—=1/4+1/4e™* m(d = (A/2) (1 + e ¥ . From
this, Fy(¢|T, 8,) can be computed numerically and this provided a use of the algorithm
developed by Cleroux and McConalogue(1976) to calculate M1, m{#). Without loss of
generality the computation can be made for only one value of A. Here the problem has been
solved for A = 0.001 so that the mean and the standard deviation of F({) are respectively, g
= 2,000 and o = 1414.21.

As was done by Tango(1978), Murthy and Nguyen(1982), Kadi and Cleroux(1988) etc., the
cost have been reparameterized in the following way: Py= ¢y/¢,, Py= ¢4/c; and
d= (c;—c¢3)/cy. Then we have 0{d<1, and if d— 0, then ¢3 — ¢, while if d=1, then
¢3 = c¢;— ¢y. Thus the value of d is a measure of the relative location of ¢3 between
¢y — ¢; and c¢;. The computation have been carried out for all combinations of P, = 0.10,
0.15, 0.20, d = 0.05, 050, 1.00 and P, = 0.01, 0.03, 0.05, 0.07. A FORTRAN program run on
Pentium computer system was used for this computation. And the standard package IMSL
"International Mathematical and Statistical Library” was used to calculate convolutions for
ML) and m (. To find T%, 6 and & which minimize C(T, &y, §,), univariate
minimization method(see Fox(1971) or Rao(1996)) was used. This numerical procedure requires
an initial value of (7, &), 62). Many trials were carried out with various initial values. In
some cases, changing the initial value resulted in a change in the solution. However, the

optimal cost does not change greatly. The minimum obtained will be the relative minimum
nearest to the starting points. But in the engineering problem, we seldom need to use
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arbitrary starting point and to be anxious about relative minima, because the relative minima
often have physical significance. The results are shown in Table 2.
It is seen, as expected, that

1) if P, increases, then the interval between two consecutive planned replacements 7T * and
optimal cost C(T", &8}, &3) increases.

2) if P, increases, with P, and d remaining fixed, then the length 85 of the inactivity
period decreases and optimal cost C(T", 8], 03) increases.

As it is not included in the Table 2, the case of &) > 8 and & # 0 was found for some
combinations of ( Py, d P,). For example, when ( P,, d, Py) = (0.20, 0.05, 0.065), optimal
policy ( T%, 8}, 85, C(T", 8, 83)) is (1409.80, 15.20, 13.90, 47.31 x 10 ™).
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Table 2 Numerical results for the case where the underlying life distribution F(# is given

by a gamma distribution of order 2 with parameter A = 0.001.

Cost structure Optimal solution Optimal cost
P, d P, T* s 8 (T, 8, 83) x10°
0.01 641.60 44.30 44.30 35.29
0.05 0.03 629.40 44.30 44.30 35.94
' 0.05 619.20 44.30 44.30 36.58
0.07 636.40 31.90 31.90 36.84
0.01 640.20 44.30 44.30 35.29
0.03 629.40 44.30 44.30 35.94
0.10 050 0.05 619.20 44.30 44.30 36.58
0.07 641.60 30.40 30.30 36.82
0.01 641.60 44.30 44.30 35.29
1.00 0.03 629.40 44.30 44.30 35.94
‘ 0.05 623.40 42.10 42.10 36.55
0.07 643.40 28.60 28.50 36.80
0.01 923.40 44.30 44.30 41.81
0.05 0.03 910.70 44.30 44.30 42.56
0.05 930.60 32.90 32.90 42.99
0.07 956.20 22.30 22.30 43.09
0.01 923.40 44.30 44.30 41.81
0.03 910.60 44.30 44.30 4256
015 0-50 0.05 937.50 30.40 30.40 42.95
0.07 961.50 20.70 20.70 43.07
0.01 923.20 44.30 44.30 41.81
100 0.03 910.40 44.30 44,30 42.56
‘ 0.05 945.80 27.90 27.80 42.92
0.07 964.60 19.10 19.10 43.06
0.01 1309.40 44,30 44.30 46.40
0.05 0.03 1345.40 34.70 34.70 47.07
’ 0.05 1404.40 20.70 20.70 47.25
0.07 14107.20 252.30 00.00 49.32
0.01 1309.40 44.30 44.30 46.40
0.03 1345.80 37.80 37.80 47.10
0.20 0.50 0.05 1409.50 20.70 20.70 47.25
0.07 1435.30 14.30 14.30 47.32
0.01 1309.40 44.30 44.30 46.40
1.00 0.03 1358.40 33.20 33.20 47.06
' 0.05 1422.30 19.10 19.10 47.24
0.07 1436.80 13.40 13.40 47.32




