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Determination of the Number of Components
In Spectroscopy
from the Multilinear Model Fitting?

Choongrak Kim?, Byung-Chull Chung?, and Choon-Hwan Lee?

Abstract

Biological specimens contain several components, and multilinear models are very
useful in analyzing these data. After fitting the model, the number of components are
determined by the change of mean squared error, however, this method is quite rule
of thumb. In this paper, we suggest a measure to decide the number of components
based on the relative change of the mean squared error. Simulations are done and
applications to real data set are given as illustrations.

1. Introduction

Biological specimens often contain multiple components with overlapping fluorescene spectra
which cannot be physically separated without seriously altering important properties of the
native specimens. A protein in which the fluorophores are the amino acids tyrosine and
tryptophan is a good example. To deal with these kinds of specimen spectroscopy is a very
useful tool.

Spectroscopy is the measurement of the absorption of particles by a specimen, or the
emission of particles from a specimen, as a function of the energy of particles. The amount of
absorption or emission as a function of particle energy is known as a spectrum.

While the primary independent variable of spectroscopy is the energy or wavelength of
particles absorbed or emitted, an experiment may involve additional independent variables.
With multiple chromophores f and wavelength 7 and differing circumstances ;j in which
concentrations of the chromophores vary, we have the bilinear equation

B = gl aiBir .

where a;; is the extinction coefficient of chromophores f at wavelength A; and B,/ is the
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concentration of f in circumstances j. Note that g ;; is the mean of the response y;;, and

F is the number of components which is unknown. Therefore, to fit the bilinear model, we
first assume F is fixed and repeat the fitting process at various F. The usual way to
estimate F' so far is comparing the residual sum of squares, and this is very important issue
in this area.

The amount of light emission measured is separately linear in the number of photons
absorbed and in the fraction of photons absorbed that lead to emission at wavelength A. With
multiple chromophores, we then have the trilinear equation

Kije = 21 aisBisTer
where 7,; is the concentration of chromophore f in circumstance 4, @, is the relative
absorption cross—section of chromophore f at wavelength A; and B, is the relative emission

at detection wavelength A;.

Based on the same idea, the bilinear and trilinear equation can be extended to the
quadrilinear model. There are over a hundred publications in the multilinear models, and the
best reference seems to be Leugans and Ross (1992). For the computations of the multilinear
models, see Lee, et al (1997).

After fitting the multilinear model, the analyst wants to estimate the number of components
F in the system. The most frequently quoted statistic to do this is the square root of the
residual sum of squares, and the estimation of the number of components is based on the
graphical display of RMSr, F=1,2,---, and it is clear that this decision is very
subjective.

In this paper we suggest a measure to estimate the number of components £. A measure

to estimate F is suggested in Section 2, and simulation results are given in Section 3. An
illustrative example based on a real data set is given in Section 4.

2. A Suggested Measure

A

let e,r = y;Fr — ¥ir be the residual of the ith observation when the assumed model
has F components, SSEr = D14y be the residual sum of squares, dfy be the
corresponding degree of freedoms, and define RMSr = V SSEr/dfr , F =1,2,3, be the

square root mean squares for the multilinear model with F components. As the number of

components F increases, RMSy decreases. As shown in Figure 1, estimation of F based on
the absolute decrease of RMSr is not satisfactory, ie., it is very hard to estimate F based

on RHSg. Therefore, estimation of F is very subjective. For the case of Figure 1, it is very
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hard to determine F. Instead we propose a relative decrease of RMSfg to estimate F, and

in fact this idea was already used by Kim and Storer(1996) in regression diagnostics area.
To be more specific, let

0p = RMSr — RMSr.y, F=1,2,3,
be the absolute decrease, and let
RRp = 6pi1/6p, F=1,2,3, -
be the relative decrease. Finally, as an estimator of F, we suggest
F = min pey RRr+ 1

where N denotes set of positive integers. Therefore, F gives the point where the minimum

relative decrease occurs.
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3. Simulation Results

To see the behavior of the suggested measure we perform Monte Carlo studies. When the
true number of components is 2, trilinear model is used for F=1,2,34 and Gaussian errors are
generated with mean 0 and ¢ = .02, .03, and .04, and 100 replications are done(see Figure

2(a), (b), (c)). Also, we perform trilinear model for F=1,2,3,45 when the true number of
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Table 1. Simulation results for the number of components F'=2 and 3

true F o F RMS RR P
1 2493
2 00500 00301
005 3 00494 83333 2
4 00489
1 02641
2 00999 00609
2 ol 3 00989 1.10001 2
4 00978
1 03153
0 9 01999 01820 ,
: 3 01978 1.00000
4 01957
1 03329
2 01645 67933
0.05 3 00501 00524 3
4 00495 83333
5 00490
| 03326
2 01641 67537
3 0.01 3 00503 00439 3
4 00498 1.00000
5 00493
1 04797
2 00346 13953
0.02 3 02004 06140 3
4 01983 1.04762
5 01961

Table 2. PARAFAC 3 analysis of fluorescene from a three-dye mixture

F RMS RR F
1 110850

2 .03074 37680

3 00144 01900 3
4 00088 25080

5 00076
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components is 3 with the same Gaussian errors and replications(see Figure 2(d), (e), (f)).
Figure 2 shows the kernel density estimation(see Silverman(1985) for details) for 100 RMSg
for F=1234 when true F=2, and F=12345 when true F=3, respectively. In fact, the
shape of distributions are very similar except their means. The means or modes of
distributions decrease as F increases. In Figure 2(a), (b), (¢} RMS; is much larger than

others, so that it is clear F=2. However, in Figure 2(e), RMS, is slightly larger than
RMSy, F=345. In this case it is not easy to conclude that F'=3.

Let us use F suggested in Section 2, then as described in Table 1, F successfully find
the true F. Now, we apply to the real data set where true F is known. The data are

obtained by the fluorescene from a three-dye mixture, l.e., F'=3(see Lee et al.(1991) for

details). We fit the data to trilinear model and the results are summarized in Table 2.

Again, F successfully find the true F.

4. Example

As an illustrative example, we use the data from the fluorescene from the three

chromatographic eluents(see Lee(1992) for details). The number of component F is unknown

and we try to estimate it by F. Results are summarized in Table 3 after fitting to the

trilinear model. Here we estimate F by 2.

Table 3. PARAFAC 3 analysis of fluorescene from three chromatographic eluents

F RMS RR F
1 02280

2 00182 01620

3 00148 1.60882 2
4 00093 29616

5 00077

Figure Legends

Figure 1. Root Mean Squared Errors ( RMSg) for F=1, 2, 3, 4 based on artificial data.
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MO, ¢%). (a), (b), and (¢) correspond to the case of true F=2, and (d), (e), and (f)
correspond to the case of true F=3. Also, ¢=.005 for (a) and (d), = 6.01 for (b) and (e), and

¢=.02 for (c) and (f). ~———~- (F=1), = (F=2), - = = = (F=3), - - —— (F=4), ——-
-—- ( F'=5).
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