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Geometric Interpretation on Chebyshev Type Inequalities?

Kee-Won Lee? and Yoon Tae Kim?3

Abstract

We present a geometric interpretation of Chebyshev type inequalities. This uses a
simple diagram which illustrates the functional bound for the indicator function of the
event whose probability we want to assess. We also give a geometric interpretation
of the inequalities in terms of volume in a Euclidean space of appropriate dimension.
Markov’s inequality and Chebyshev’s inequality are treated in more detail.

1. Chebyshev Type Inequalities

There are a large number of Chebyshev type inequalities, that is, inequalities for the value
of a distribution function in terms of moments of the distribution. See Godwin (1955) for an
extensive survey of the subject. For an historical review of the subject, see Heyde and Senata
(1977). We restrict our attention to the case where we require an upper bound of the tail
probability with known high order moment. Without loss of generality, let X be a positive

random variable such that FE (Xk ) oo, for k=1 a given integer. Then, a generalized form
of Chebyshev’s inequality can be stated as

Pr(X>a) < min{ 1, E(X*/a*} for every a > 0. (1)

Throughout, assume that E(Xk )/a* < 1 to avoid the trivial case. For illustration, consider
the case where £ = 1, then (1) reduces to Markov's inequality. Furthermore, when &2 = 2
with X = |Y—E(Y)|/o(Y), where o(Y) is the standard deviation of Y, (1) reduces to the
standard Chebyshev inequality. Its proof in most text books wusually splits the interval
{X > 0} into {X = a} and {0 < X < a}, then proceeds to discuss probabilities related to
these. In this paper we give an alternative proof based on a simple diagram, which reflects
the idea of splitting the interval through an indicator function. This can be more informative
in that it gives a direct indication of when the equality holds. Second, we explain the
geometric meaning of Chebyshev type inequalities by expressing the k-th moment as a
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volume of an object in k-dimensional Euclidean space.

Note that Pr(X = a) can be expressed as E{I(X = a)}, where I( ) denotes the
indicator function. Now that E(Xk) is given, we will find a linear function of x* which is
always greater than or equal to the indicator function I(x = a) over the region x > 0. From

Figure 1, it is easy to see that I{x = a) < xk/ a* for a > 0. Therefore, the inequality can
be checked by the monotone property of expectation, so that

Pr(X = a)= E{I(X = a)} < E(X*d".

In addition to the proof of the inequality itself, this figure helps determine when the equality
holds. From Figure 1, it is clear that the equality holds at the points x = 0, or x = g,

“_

which are marked with x . Therefore, if we consider a distribution concentrated at the

points 0 and a, then the equality holds in (1).
2. Geometric Interpretation

In this section, we give a geometric interpretation of Chebyshev type inequalities as
expressed in (1). We may rewrite the inequality (1) as

(a*/B)Pr(X = a) < E(X"/E!. (2)

The left hand side of (2) represents the volume of the k-dimensional prism whose base is

described by the region {(z; w%,): 0 < #; < < u, < a} and whose height is the

constant Pr(X = a@). We may choose & among the continuity points of the distribution
function of X, since the set of discontinuity points has a Lebesgue measure (. On the other

hand, for a positive random variable X with k-th moment, we can check that

B(XY = fomxka’F(x)
= kfooo foxuf_ldude(x)

= Bk — 1) fom fox fomu::%duk-ldude(x)

= k! fow fox fouk ou2 duy - dudF(x)
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S fom fw fm fwfw AF(0)duy - dusdupduy

= kl fo fo Pr(X > uplu, > = > wupduy--du,

= k! fo fo Pr(X = wup)lu, > - > wup)duy -duy .

Since Pr(X = wu,) can be positive for at most countably many values of 1, the two
integrands differ only on a set of Lebesgue measure 0 and hence the integrals are the same.
Thus, E(X")/k! represents the volume of a (k+1)—dimensional figure which has a k—
dimensional base described by the region {(u,..., %) : 0<%;<--~<u,} and whose height
varies as the length above the cumulative distribution function of X. This clearly includes the
(k+ 1) —dimensional prism described on the left hand side of the inequality (2). Now we
give a more detailed explanation for the cases where & = 1,2.
EXAMPLE 1. (MARKOV'S INEQUALITY) It is well known that for X > 0

EX) = fow Pr(X > x)dx,

which is the area above the cumulative distribution function of X. Figure 2 depicts a typical

situation clearly. The rectangle displayed has an area equal to a X Pr(X > a). Therefore,
we can write

a X Pr(X > a) < E(X),

which leads to Markov's inequality. This figure also shows that the equality holds when the
distribution function of X is a step function with steps at x = 0, a, that is, a distribution
with probability mass at the two points 0 and a.

ExAMPLE 2. (CHEBYSHEV'S INEQUALITY) Consider the standard Chebyshev inequality as the

second example. We need to check that Chebyshev's inequality can be reduced to the
following;

Pr(|1X | =a) < E(XY/d,

where E(X) = 0. Let H(x) be the distribution function of the random variable |X |.
Then, we can write
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BX?) = [ ydH(»)

2 [ [ dudE(s)

=2 [ [ [ dududris)

=2 [7 7 [7 an(s)duau

=2 [ [ Pr(Xl >0lv > wdvdu

= 2 fow fom Pr(| Xl =v)K v > wdvdu .

Therefore, in Figure 3, E(X?)/2 represents the volume of the wedge-shaped object that
consists of the part above the plane formed by distribution function H( - ) stretched over the
u direction, but restricted to the region {v > u}. The four vertices of the wedge-shaped
object are given in the order (wx,v,H) by (0,0,0), (0,0,1), (0,H (1),1), and

(H™'(1),H %(1),1) . Now, the wedge inscribed has the volume (&2/2)Pr(|X] >a).
Therefore, we have

(d/2)Pr(1X] 2a) < E(X9/2,

which reduces to the standard Chebyshev inequality.
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Figure 1: Diagram for the proof of Chebyshev type inequalities. The black line denotes the

indicator function I{x= @), and the gray line denotes the upper bound x* / a®.
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Figure 2! Geometric interpretation of Makov's inequality. The area above the curve equals
E(X), while the area of the rectangle inscribed equals aX Pr(X> a).
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Figure 3: Geometric interpretation of Chebyshev’s inequality. The volume of the
wedge-shaped object equals E(X° )/2, where the volume of the wedge inscribed equals
(a® [2)Pr(IXI>a).
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Figure 3.



