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Abstract

It has been issued that the irreconcilability of the classical test for a point null and
standard Bayesian formulation for testing such a point null. The infimum of the
posterior probability of the null hypothesis is used as measure of evidence against the
null hypothesis in Bayesian approach; here the infimum is over the family of priors
on the alternative hypotheses which includes all density that are a priori reasonable.
For iid observations from a multivariate normal distribution in p dimensions with an
unknown mean and a covariance matrix propotional to the ldentity, we consider the
difference and the Wolfowitz distance of the distributions of the P-value and the
lower bound of the posterior probability over the family of all normal priors. The
Wolfowitz distance is interpreted as the average difference of the quantiles of the two
distrbutions.

1. Introduction

It is very well known that in parametric testing problems where the null hypothesis is
sharp, the standard Bayesian method and the classical method of testing the null hypothesis
are sometimes hard to reconcile. There are many results to this effect in the literature; Berger
and Sellke(1987) made an illuminating contribution wherein they show that for testing a sharp
null hypothesis about the mean of a univariate normal distributions with a known variance,
even the minimum posterior probability of the null hypothesis over really large classes of
priors on the two-sided alternative can be significantly larger than the P-value of the
common classical test, regardless of the sample size, provided the sharp null is assigned a
probability of 0.5. Casella and Berger(1987) showed such a conflict appears to be germane to
the sharp null. Berger and Sellke’'s phenomena has been extended and generalized for high
dimension in Berger and Delampady(1987), Delampady(1989a, 1989b, 1990). Also, Oh and
DasGupta(1998) considered in greater depth the role of the assumption that the apriori the
sharp null has a probability of 0.5 in the Berger-Sellke phenomenon.

This article considers the problem of testing a sharp null hypothesis for iid observations
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from multivariate normal distribution; X,,..., X, are iid random vectors in p dimension
with the N( @, ¢°I) distribution. A point null hypothesis H,: 8 = 6y is tested against a
two-sided alternative H; : @+ 6,. m, denotes the Bayesian's apriori probability on Hy. The
family of priors considered on the alternative is I yyy = {all multivariate normal N(Q, 2I)

priors}. Without loss of generality let us assume &y= 0. Since a sufficient statistic of @ is

02

X which is distributed as N( 0,"71—1), for any g(8)<=TI yyn the posterior probability of

H, is given by

—n) mgx 1

T Ax18=0)

]

P<H0|x,g<o)>=[1+ a
g

where mg(;c) and f(x|@=0) are the density functions of N(O, (z‘z+—n—)1) and

N(O0, A1 ), respectively. The infimum of the posterior probability of H, is attained at

x'x &
max {0, ) "

ML-II prior. Let z=V nx . We then have the infimum of the posterior probability of Hy,
P(Hylx,I'), as follows.

2=

T ] at which mg(}) is maximized over g< I yyn. Here 72 is called

o if lzll*<p
P(Hylx,IN=

1- 7 exp(nz||2/z>)“ : 2
+ f >b.
0 ellzlipry ) =2

Also, since ||Z||? is distributed as the Chisquare distribution with p degrees of freedom
under H,, the classical P-value is given by
p(2)=P(X; > ll2ll*).
Section 2 deals with the distribution of the difference between P(Hjlx, I yor) and the
P-value in one dimension. In section 3, the Wolfowitz distance of the unconditional and
conditional( conditioned on P-value < py(fixed) ) distributions of P(Hylx, I yyy) and the

P-value in each dimension is derived. The distance is interpreted as the average difference of
the quantiles of the two distributions. Figure 1 is given for visual illustration of the difference

between the P-value and P(Hylx, I yvy) for 7;=0.5 in one dimension.
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Figure 1: (a) Plots of the P-value(---) and P(Hy|x, [yor)(—) (b) The Plot
of the P(Hy|x,T'vog) vs. the P-value
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2. Distribution of the difference between the P-value and the infimum
posterior probability

Let us consider the distribution of the difference between P(Hylx, I’ ~or) and the P-value
in one dimension. Let d(z) denote the difference of P(Hylx, I yog) and the P-value, p(z2).
Then

d(z) = P(Hylx,T nog) — p(2)

my—2(1— @(lz|)) if |z]<1
- 1-m exp(2/2)\ ' .
(1+ ) ‘/—€|Z| ) if |Z|>l .

Clearly, d(2) is increasing if 0<z<1. For 1< z< o0, d(2) has exactly one maximum with

Iir{)lo d(2)=0. The proof of this with any dimension p will be given in Lemma 1 in section3.

Theorem 1. For the null distribution of d(Z), the median is my— 0.5 for my<0.5; for

m;> 0.5, the median my is the unique root of the equation,

mg=d (0 " (5/4 + (my — m))/2)).

Proof : Since d(1) = my—2(1— @®(1)), 7, —0.5<d(1). So
Pd(2)<m—0.5) = P(ry—2(1 — 0(Z))<m—0.5)

= PQ21-0(Z))>0.5)=0.5.

Now for 7> 0.5, let m, denote the median. We claim m4< d(1); for otherwise,
Pd(Z)<my) = P(ry—2(1—0(Z))<m—2(1—-0(1)))
> 0.5,

which is a contradiction. Thus

Pd(Z)<my) = P(m—2(1—0(Z))<my+ P(d(Z)<my). oY)

But, since d(2) is monotone decreasing for z< d(1) and since m,< d(1),

P(d(Z)<my) = P(1ZIzd ' (m).
Then (1) implies that
md=d(¢_l(5/4+(md“7fo)/2)) . O
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The assertion of this result is intriguing. In particular, with z;=0.5, P(Hplx, I yor) will
be larger than the P-value in exactly 50% of a long sequence of experiments. Table 1 shows

the median, mean and standard deviation of the distribution of d(Z) for various values of .

Table 1 : Summary of the distribution of d(Z)

T median mean std. dev.
0.1 -0.4 -0.407149 0.278297
0.2 -0.3 -0.313462 0.269735
0.3 -0.2 ~-(.218825 0.263053
04 -0.1 -0.12309 0.258303
0.5 0. -0.0260617 0.255529
0.6 0.072535 0.1162675 0.254794
0.7 0.173107 0.1315536 0.256259
0.8 0.276329 0.1581646 0.260371
0.9 0.38355 0.1967748 0.268511

3. Wolfowitz distance of distributions of the P-value and the infimum
posterior probability

Let F and G be two different c.df.s. Then WF, G)=f_°°|F(x)—G(x)ldx is called the

1
Wolfowitz distance of F and G. Since WF,G) = fo IF'— G Y(x)dx (see Dudley(1989)),

W F, G) is the average of the absolute difference of quantiles of F and G. In this section the

Wolfowitz distance of the P-value and the infimum of the posterior probability of H; are

derived for the family of multivariate normal priors on H,, Iy in each dimension.
3.1 Unconditional distributions

Let F be the c.df. of P(Hylx, I yyn) and let G be the c.d.f of the P-value in p-dimension.
Since the P-value is uniformly distributed on (0, 1), it follows that G(x) = x for 0<x<1. If
we define

—m e 2
m  (et/p)

A =1+ )L @

then
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.0 if 1zII° < p
H\X, T = . .
X, T o) {MuzuZ) if Izl >

Since A(#) is decreasing in t for t > p, it follows that F(x) = 1 for x=m;. For x< my,

F(x) = P(A(lzlIH <x) = P(xiZ/l “1(x)). The following Lemma is needed for the proof
of Theorem 2.

Lemma 1. o(y)=A(y) — & x?, > p) =0 has the only root and o(y) changes sign once from

the negative to the positive at all on [0, o) for any p.

proof: Let us consider R o(3). Note that

oy
Q p2—1 _ 27,
where C1=1—T071’0(_§_)p/2 and C,=(I(p/2)2"% L.
Thus
20 =0
o (y=P-5h = CylyPe 20y e+ ). ()

Since the expression on the right in (3) is decreasing of y for y > p, aiy o(y) =0 has the

only one root. Hence there exists exactly one extremum on [p,o0) and it can be shown to

be a maximum. Now, since lir;fép(y)=—-1 and lim p(y)=0, there must be one root of
» yroo

o(y)=0. Moreover, o(y) changes sign once from the negative to the positive obviously. []
Theorem 2. If 7> P(x5>=p),

WF,G) =05+m—n,[1+P(a=p) ]+ fpmf,,(x)/i(x)a’x ;
if m<P(x5<p),
WF,G) = 0.5—ml1—P(x;=n]—[P (x> alm)]?
[ i@t [T partode

where f,(x) denotes the density function of Chisquare distribution with p degrees of

freedom and a(m,) is a unique root of the equation A(y)= P( x?, >+y) for a given p.
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proof : By the definition of F and G,
Ty , 1
WF,G= [ IP(=4 " 0 —xlas+ [ (1-nax
= —fp IP (25 =y)— A(y)|A '(y)dy+—%*(1—7r0)2 (by change of variable).

Let a(m) be a unique root of /‘((y)—P(;c?J >y)=0. By Lemma 1,
if a(m)<p, A(N=P(xi>y) for y>p;

if a(m)>p, AMN<P(x;=y) for p<{y<alm) and A3)> P(x5=y) for y=a(m).
Also, note that

am)<p S AP —P5=20)>0 @ > P(xo=p).
(i) Assume that m,> P (x> > p).

Then
[T =9 -2002 Gray
= —P(52pAD+0.5Ap*+ f,, wf,,(y)ﬂ(y)dy (by integration by parts)
= PP +0.55+ [ Ay,
Thus

WE, G =0.5+m—m 1+ P52 p1+ [ funA(Dds.
(ii) Assume my<P(x5>y).
Then
[T G2 =0=2600 Dy
= [P G2 - 200 G- [ GO = PGE= 302 Gy dy
= —P (1) = alm)Aa(xy) + P (% = p)AD) + A al(xy)) — 0.5A(p)*
= —P(x; 2 alm)A(almy) — fp a(no)f,,(y)/l(y)der fazo)fp(y)/l(y)dy (by integration by parts)

alm,)

= P (429 —0.58-[P (4 = a(x)]* - |

Thus

(0 A(y)dy+ f a:)f,,(yyl(y)dy.

a(

) o
WE G)= 0.5-ml1-P (420~ [P(G2a)) ~ [ fuok@dst [ fuaMar.

]
Table 2 shows the values of W(F, G) for various values of m; and p. The distance, W(F,
G), is large for too small or too large m; and as m; tends to 0.5 from the extremes the

distance becomes short. Also note that W(F, G) is minimized at #;=0.5 which is considered
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as ‘objective’ choice of prior probability on Hj. On the other hand, distances become short as

p tends to infinity.
3.2 Conditional distributions

In this section, let us consider the case that the P-value is moderately small for which we
have more interest in comparing P(Hylx, I yvn) and the P-value. We have the following

illustrative example.

Example 1 Let F° denote the conditional c.df. of _P(Hlx,I nog) and let G° denote the

1—7m ¥
—— > 0.
0 y) v >0

conditional c.d.f of P-value, given P-value < 0.2. Let A(y)=(1+

Then
F(0)=101— 0k "' (x))), 0<x<h(z),
where z, is a root of 2(1— @(2))=0.2. Also,
G°(x)=5x, 0<x<0.2.
Since h(y) is increasing in m, for a fixed y > 0, h(2¢=0.2 if my=7m,", where oy
satisfies #(zy) =0.2. The approximate value of 2z, and myt are 128155 and 0.211955

respectively. Also, since #(y)—2(1— @(¥)) has only one root and it changes sign once from
the negative to the positive at all for y > 0 (see Lemma 1 for the proof of this in general

multi dimension),
Wy)>2(1—&(y) for ¥z, if .m=2mg

Let hy= h(zy). Thus, if my>m", the Wolfowitz distance of F° and G° is

WFe, 6= 5[ [0 00k (o = st [7(0.2-201— 00 w0
= 5[~ [ 21— 00D — O () dy |

+ [ @a- 0 =028 ) ] (b change of variabie
= 5[ [, () =21~ 0 (3) dy

TR .
+ [ T ea- o) -0.21 (|

= 5[—0.02+2fzm¢(y)h(y)dy] (by integration by parts).

Now, assume that ;¢ 7r0* and let a(m) be a unique root of the equation
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y)=2(1—0(y)) for y>0. Again, since h(y)—2(1— ®(y)) has only one root and it
changes sign once from the negative to the positive at all for vy > 0 and

h(z9) <2(1— @&(zy)), almy) > zy Thus, if 7y< 7y,

r a(my) ]
WE,GY= 5~ [ (21— 0(3) — k(»)h (5) dy
C e . 0.2
= [ (B =20 = 0K G dy+ <0,2_x)dx]

- a(m) o
= 5]0.02- (20— @atm) T =2 [ My +2 [ dh(s) ]

For each m;, the value of W(F°, G°) is given on the first column (p=1) in Table 2. The
distance increases as m, goes away from near 0.2. So if the P-value < 0.2 is given, ie., there
is a significant evidence against Hj at level 20%, then the choice of m;=0.2 seems to give

the shortest distance of F° and G°. Also, note that the distances of F° and G¢ are small
compared. O

Let us consider the distance between the conditional distributions of the P-value and
P(Hylx, I yyy) in general multi dimension. Let F° be the conditional c.df of
P(Hylx, I yyyy) and let G° be the conditional c.d.f of P-value given that the P-value is less
than or equal to py(fixed). Let ¢, be a value such that po=P(xi2t0). Assume that

Po< P( xiz p) and recall A(®) in (2). Then the conditional distribution of P(Hylx, T yyy) is
given by
P(x,z, > ")

if 0<x<A(t)
Fc(x)*_*[ bo . 0
1 lf XZA(Z‘[))
and
X .
= if 0<x<{p
Gc(x)={ 1)0 . 0.
1 lf prO

Theorem 3. Given P-value <p, with py< P( x‘rf, >p),
by
pot+(1—pge —[O/z(eto/i)) 22

distribution of p degrees of freedom.
Then,

let 7yt = where #; is the (1— po)th percentile of Chisquare
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710[—0.5p§+ [, fuoi(Daa] it 7=,

WEF, G) = —pl; {0.508— [P (2 = almp))]?

a(nu) oo
_fto () A(x)dx+ fa(”o)fp(x)/l(x)dx} if mp< ",

where f,(x) denotes the density function of Chisquare distribution with p degrees of

freedom and A(y)= P(x:f, >y) for a given p.

proof : Let Ay=A(f#). Note that since A, is a increasing function of m,
Adog=py © my= 1y, where m," satisfies the equation Ag= p;. Then

7[*= 170 ;
T pet (L—ppde et/ )"

(i) Assume that m,> 7"

Then, by the definition of F° and G°,
c cy __ ;1 Po 2 -1 _
WE,GY= [ [ 1P(2a (- dr
Ao
+ [ (= P(247(0) ]

1 @ .
= o= [ (P20~ 26)1 () &)

ANy

7;1;[“],0 (Po— P (2324 (3) dy]
_ —1%(;[—0_51)%+ft0 FANA) dv]

(i) Assume that < 7pF.
Then

WFS, G°) = —1[f1°|P(x2>a—1(x)—x|dx+fp”(P — X
’ Dy o r= 4 0
= 710[‘f, [P (2= y)— A 1A () dy+ po(pg— Ag) — 0.5(05 — A3)].

Let a(m,) be a unique toot of the equation A(y)=P(x%>y). Since A;< py for m< T,

a(ny) > ty by Lemma 1. Thus
— [ 1P 23 - AR () ay

a(m,) . o . .
= [ P@GzH- 2 Gydy= [ ()~ P(5 = (D dy
a(xy)

= —058-[P (= am) P pdo— [ 1Ayt [ S dy.
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This proves the result.
]

Table 3 shows the values of W F°, G°) for various values of 7, and p for p;=0.2.
As in Example 1, it can be said that the distance increases as &y goes away from near pg
=0.2. So if the P-value < p; is given, ie., there is a significant evidence against H, at level

100 po%, then the choice of my=p, seems to give the shortest distance of F° and G° in

p-dimension. Also, distances become short as p tends to infinity. That is, Bayes-classical
conflict distance decreases as p increases, which is known as Lindley’s paradox.
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Table 2 : Value of W(F, &)

b4 p=1 p=2 p=3 p=4 p=5 p=6 p=7
0.1 0.40768 0.408904 | 0.409625 | 0.410103 | 0.410448 | 0.410730 | 0.410925
0.15 | 0.364839 | 0.365186 | 0.365647 | 0.366022 | 0.366323 | 0.366570 | 0.366776
0.2 0.327574 | 0.326292 1 0.325988 | 0.325908 | 0.325903 | 0.325970 | 0.325962
0.25 | 0.296446 | 0.293563 | 0.292395 | 0.291758 | 0.291356 | 0.291078 | 0.290875
0.3 0.271205 | 0.267117 | 0.265220 | 0.264090 | 0.263325 | 0.262767 | 0.262337
0.35 | 0.251363 | 0.246617 | 0.244215 | 0.245722 | 0.241683 | 0.240908 | 0.240301
04 0.236874 | 0.231655 | 0.228969 | 0.227259 | 0.226047 | 0.225129 | 0.224403
0.45 | 0.227707 | 0.222086 | 0.219187 | 0.217341 | 0.216028 | 0.215031 | 0.214239
05 0.223894 | 0.217944 | 0.214870 | 0.212910 | 0.211516 | 0.210456 | 0.209614
0.55 | 0.22547 0.219276 | 0.216069 | 0.214021 | 0.212563 | 0.211455 | 0.210574 .
0.6 0.232481 | 0.226137 | 0.222843 | 0.220783 | 0.219238 | 0.218096 | 0.217189
0.7 0.263045 | 0.256747 | 0.253448 | 0.251336 | 0.249829 | 0.248680 | 0.247765
0.8 0.316258 | 0.310603 | 0.307620 | 0.305699 | 0.304324 | 0.303274 | 0.302436
09 0.39347 0.389431 | 0.387260 | 0.385854 | 0.384841 | 0.384066 | 0.383445
T p=8 p=9 p=10 p=15 p=20 p=25
0.1 0.411099 | 0411245 | 0.411371 | 0.411808 | 0.412077 | 0.412265
0.15 | 0.366951 | 0.367102 | 0.367535 | 0.367717 | 0.368028 | 0.368250
0.2 0.326002 | 0.326043 | 0.326083 | 0.326261 | 0.326398 | 0.326506
0.25 | 0.290719 | 0.290569 | 0.290496 | 0.290190 | 0.290032 | 0.289937
0.3 0.261994 | 0.261713 | 0.261476 | 0.260688 | 0.260230 | 0.259924
0.35 | 0.239809 | 0.239400 | 0.239054 | 0.237872 | 0.237165 | 0.236682
04 0.223811 | 0.223315 | 0.222891 | 0.221532 | 0.220545 | 0.219933
0.45 | 0.213589 | 0.213044 | 0.212577 | 0.210955 | 0.209958 | 0.209266
05 0.208923 | 0.208343 | 0.207846 | 0.206119 | 0.205057 | 0.204319
055 | 0.209851 | 0.209243 | 0.208732 | 0.206912 | 0.205799 | 0.205024
0.6 0.216444 | 0.215817 | 0.215280 | 0.213413 | 0.212263 | 0.211463
0.7 0.247013 | 0.246381 | 0.245839 | 0.243949 | 0.242784 | 0.241972
0.8 0.301747 | 0.301167 | 0.300669 | 0.298029 | 0.297927 | 0.297102
0.9 0.382934 | 0.382502 | 0.382131 | 0.380830 | 0.380022 | 0.379456
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Table 3 : Values of W{ F°, G°) conditioning on P-value < 0.2

Ty

p=1

p=2

p=3

p=4

p=5

p=6

p=7

0.1

0.03717

0.041505

0.043897

0.045432

0.046517

0.047335

0.047981

0.15

0.02244

0.021644

0.022219

0.022874

0.023462

0.023970

0.024410

0.2

0.0356611

0.026060

0.022357

0.020415

0.019227

0.018428

0.017858

0.25

0.0711361

0.056729

0.050003

0.045916

0.043100

0.041007

0.039370

0.3

0.108668

0.091790

0.083875

0.079056

0.075758

0.073251

0.071314

0.35

0.147503

0.128335

0.119304

0.113791

0.109977

0.107136

0.104912

0.4

0.18774

0.166499

0.156436

0.150278

0.146010

0.142826

0.140331

0.45

0.22955

0.206442

0.195447

0.188699

0.184014

0.180515

0.177769

05

0.273046

0.248354

0.236543

0.229273

0.224215

0.220423

0.217461

0.55

0.318425

0.292461

0.279971

0.272259

0.266883

0.262856

0.259690

0.6

0.365909

0.339037

0.326033

0.317977

0.312350

0.308127

0.304803

0.7

0.46838

0.441072

0.427681

0.419322

0.413454

0.409035

0.405547

0.8

0.583823

0.558670

0.546133

0.538236

0.532657

0.528438

0.525095

0.9

0.718981

(.700360

0.690867

0.684809

; 0.680493

0.677207

0.674551

o

p=8

p=9

p=10

p=15

p=20

p=25

0.1

0.048506

0.048944

0.049319

0.050598

0.051369

0.051899

0.15

0.024794

0.025129

0.025431

0.026540

0.027271

0.027801

0.2

0.017432

0.017101

0.016844

0.016082

0.015722

0.015526

0.25

0.038045

0.036947

0.036008

0.032820

0.030906

0.029592

0.3

0.069744

0.068443

0.067329

0.063544

0.061269

0.059706

0.35

0.103108

0.101611

0.100330

0.095971

0.093348

0.091544

0.4

0.138306

0.136626

0.135185

0.130281

0.127326

0.125291

0.45

0.175540

0.173688

0.172100

0.166686

0.163420

0.161168

0.5

0.215046

0.213040

0.211317

0.205438

0.201886

0.199435

0.55

0.257114

0.254972

0.253131

0.246843

0.243037

0.240408

0.6

0.302095

0.299843

0.297904

0.291277

0.287259

0.284480

0.7

0.402698

0.400326

0.396279

0.391262

0.386990

0.384028

0.8

0.522358

0.520075

0.518096

0.511297

0.507138

0.504243

0.9

0.672439

0.670643

0.669072

0.663665

0.660336

0.658006




