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Accuracy of Brownian Motion Approximation
in Group Sequential Methods?!

Euy Hoon Suh?
Abstract

In this paper, some of the issues about a group sequential method are considered in
the Bayesian context. The continuous time optimal stopping boundary can be used to
approximate the optimal stopping boundary for group sequential designs. The exact
stopping boundary for group sequential design is obtained by using the backward
induction method and is compared with the continuous optimal stopping boundary and
the corrected continuous stopping boundary.

1. Introduction

In the long-term clinical trials, where the patients are entering sequentially, the strict
application of fixed sample size designs is unjustified on ethical grounds. On the other hand
fully sequential designs may be impractical due to need for continuous assessment of
accumulating data. The planned use of the group sequential designs has been advocated as
the convenient approach to the monitoring of clinical trials.

In the literature there are many ad-hock group sequential designs, to name a few, Pocock
(1977), O’Brien-Fleming (1979), and Lan-DeMets (1983). For a good review one can see in
Whitehead(1992). But relative merits of the different types of group sequential designs are
seldom seriously investigated. In most of these procedures either one uses Brownian Motion
approximation to evaluate error probabilities or uses some numerical methods. The numerical
methods are usually very time consuming. In this presentation we would like to resolve some
of the issues In the Bayesian context. In this manuscript we will focus on the following
issues:

(@) How to select the number of groups in a group sequential method, without loosing much
“information”.

(b) In the decision theoretic framework, how a continuous time stopping problem with
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Wiener process can approximate a discrete time group sequential procedure.
(¢) How good is continuous time “optimal” stopping boundary as an approximation to
“optimal” group sequential stopping boundary.

2. Statement of the Problem

In Anscombe (1963) introduced a decision theoretic approach to clinical trial in the fully
sequential context. He assumed that the patients are treated in pairs during the experimental

phase of the study, where the difference in response (treatment 1-treatment 2) is

distributed as N(g, 02) r.v. with g unknown. He also assumed that a patient horizon N, the
total number of patients ever to receive either of the treatments, is known. The loss function
is defined as |u| times the number of patients receiving the poorer treatment. After

experimenting on # pairs of patients, let S, denote the sum of the response differences.

Anscombe assumed that the remaining (N—2#n) patients would be treated according to the

sign of S,, that is, if S,>0 then the remaining patients will receive treatment 1. If we

assume that g has a prior distribution A(z), then the posterior expected loss can be written
E(L) = nE[| xl]1+ (N—2n) Elmax (0, — ¢ sgn(S, )], (2.1)

where the expectation is taken with respect to the posterior distribution of g after observing
S..

In this manuscript, we will use Anscombe’s decision theoretic framework, in the group
sequential context.

3. Fully Sequential Discrete and Continuous Time Problem

Chernoff-Petkau (1981) considered the Bayes sequential problem for the anscombe loss

function (2.1) and the prior distribution A(x) to be a normal distribution with mean Yo and
variance 020. After observing the differences Xl;"-,X » in effect of treatment 1 minus

treatment 2, the posterior distribution of z becomes N(Y5,s,), where



Accuracy of Brownian Motion Approximation in Group Sequential Methods 209

[0(1_2#0+ o2 in]

Y,=— - - , sv= (07 +no?
" 0‘02+n0 2 " (0 )

-1

(3.1

From Chernoff (1972), we have the following lemma.

Lemma: The distribution of (Y5— Y5 Y5) is a MO,sm—sy), and Y,— Y, is independent
of Y, , for n=m=0.

Therefore, Y, behave like a Gaussian process of independent increment starting from
Y=y and s; = oﬁ Since the preferred choice of treatment for the remaining N-—2n

patients is indicated by the sign of Y,, the expected loss or the posterior risk associated

with stopping after treating #» pairs of patients is
nE(| #) + (N—2n) E[ max {0, — sgn( Y;)u})],

where E represents the expectation with respect to the posterior distribution of 4 given
Y.

By simple calculations, the posterior risk can be expressed as

1 -1
M) o (v TP -dv-zm | v,

where

o(u) = () +u ()=},

and ¢(u), @(wu) are the standard normal density and cumulative respectively. Using (3.1),

the posterior risk can be written as d, (Y3, s,), where

1 _1
dl(y"s*)=Ns‘2¢[y‘ s 2]—02[30_1— s sgl=ao‘2+%-zva‘2. (3.2)

The problem of selecting the best sequential procedure for terminating the experimental

phase is equivalent to the optimal stopping problem where the Gaussian process Y, is
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observed and one selects the stopping time 7 to minimize the expected risk E{ di( Y;,s;)}.,

where the expectation is taken over the distribution of the stopping time r.
A natural approximation to the above problem is to replace the discrete sequence of partial

sums ZX ; by the continuous time Wiener process X(#*) with drift # and variance i per

unit in the ¢* scale (0<#"<N/2). The posterior distribution of g, given X(¢) for 0<¢<¢,
is MY",s"), where

-2 2y g
og “po+ o X() . _ . -
{an‘ozﬂ*a‘z L = (o + 107

-1

V=Y (s")= (3.3

From Chernoff (1972), we know that Y*(s") is a Wiener process with drift 0 and variance
1 per unit time in the - s* scale, and originates at the initial point (yg,sy), Where s; = 02

vo=Y(s5) =1 As t increases from ( to N/2, s° decreases from s; to

-1
Sg = [UO_ 2+% 0_2] . When o‘[z)—>00, that corresponds to negligible prior information.

By using the transformation, Y(s) = aY*(s*) and s= a’s", one can convert the Y*(s) to
the Y(s) process. This is also a Gaussian process of independent increments with
E[dY(5)] =0 and Varld¥(s)] = —a’ds"= —ds.

By using (3.2), we get

1 _1 ~
d(y,s) = Na~'s*? ¢[ys 2]——02[50 R PR EY

1

2
If we choose a= (do—z-f-%Nd—?) , then

1 _1
d(y,s) = Na~'s 29/J[ys 2]—oza(l—s"l)lyl ,

-1
where 1<s<so=020(60“2+%N0_2) = Let

dy(y,s)=—(1—=s"Hlyl

Since the first term of d(y,s) is a martingale, and (¢°a@) is a constant, the optimal
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stopping boundary for the cost functions & and d; are same. Hence d(y,s) is the
normalized version of the original problem. For the normalized version of the Anscombe's
problem Chernoff-Petkau (1981) computed the continuous time optimal stopping boundary.
These are tabulated in Table 1 and plotted in Figure 1. We will investigate how the

continuous time optimal stopping boundary can be used to approximate the optimal stopping
boundary for group sequential designs.

4. Group Sequential Designs

The group sequential design can be described as follows: Suppose the total number of pairs
of patients (.5N is split into K groups of m pairs of patients, Km = (§.5N. Then the
stopping is allowed only at the values n=1im, for 7=1,---, K, and the stopping is enforced
after the Kth group when n=Km = (0.5N. So the discrete time group sequential designs
can be interpreted as the continuous time problem where the stopping is enforced only at the
points n=1im, 1=1,---, K. In the Bayesian framework the group sequential problem can be
described as the following problem: We observe

1

Xz'm == Z ngij’ 1= 1,2,...,K

which are independently and identically distributed normal random variables with mean g and

variance % Where g has a prior distribution that is normal with mean gy and

5t =
variance o‘é
The posterior risk associated with stopping at zth group is given by

imE(| ]) + (2Km— 2im) E[ max {0, — sgn( Y3,) #}]

= m[iE(| p) + 2(K— 1) E[ max {0, sgn( Y)}]].

where the expectation FE is with respect to the posterior distribution of x. Thus the group
sequential problem is same as the fully sequential problem, if we replace »n by ¢, g by K
and o by ol = %f; . Hence we can approximate optimal Bayes boundary and Bayes risk for

the discrete time problem from the corresponding continuous time problem. For the continuous
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time problem one can write the posterior cost of stopping at (y*,s") as

1

dy,s") = m[ZKs*%di(y's* z)—(K—i)b"l] X

By wusing the transformation Y(s)=aY"(s") and s=a’s" and by choosing

a*=(6y2+07K) ,

1

1 _
2)—Bza(l—s_l)lyl], 1<s<sy = 020(00—2+K77—2). (4.1)

d(y,s)= m[ZKa_ls 2 </J(ys

Let di(y,s)=mo’a(1—s"Yly|. Since difference between d"(y,s) and di(y,s) is a
martingale, the optimal stopping boundary for both cost functions are same. Comparing

d\(y,s) and di(y,s) one can see the optimal group sequential stopping boundary can be

related with optimal continuous time boundary.

5. Corrections to the Continuous Time Boundary to Get the Group
Sequential Boundary.

From (3.3), if we let g5—o0, we get

Y = ¥'(s") = i"%iﬂ &= (o), (5.1)

i2=1 ;ZX""
Let W= —\/2—7;‘—‘ =>b; ,

where b; is the standardized continuous time optimal stopping boundary evaluated at

= {/K. Using (4.1) and (5.1), one can relate the continuous time boundary with the

group sequential boundary in the following way:

X _1 S 1] 1o -1 Y(s) _
Y(s) = ;= lglx,--— \/%W, i=1,- K, s m O T =W.

Y(s)

If we use Chernoff (1965) boundary correction to the above problem, when ¢=i/K,
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the boundary, and s=(2/N)(1/5, we get

N.l*'—'

V()= Vo % - L) = Voo G - L) -0.58267 4,

1
miGiE 1) Hence

YVaus(s) = ?mt(S)*'O.5826\/ m or
Y i(s)
ff —0. 5826\/ - K .

The corrected continuous time stopping boundary is tabulated in Table 2 and plotted in

where 4;,= §;—§;41 =

Figure 2.

6. Optimal Group Sequential Boundary by Using Backward Induction.

In the normalized version of the problem, we observe a standard Wiener process Y(s) in -

s scale, 1<s<oo, If we stop at Y(s) =y, then our stopping cost is
dy(y,8) = —(1—s"Hlyl

We can stop only at s;= (1/im), i=1,2,, K.

Let o(y,s) be the risk corresponding to the optimal stopping rule starting at (y,s). Then
oly,1)= dz(}’, 1).
We can start the backward induction as follows:

p(y,s;) = min [do(y,s)), ECo(y+2Vd,5:51))], (6.1)

where 2z is standard normal random variable and 4,= s; — s;+1. If

o(y,s;) =dy(y,s,;),
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then (y,s;) is a stopping point, otherwise it is a continuation point. By linear extrapolation
one can get the exact stopping boundary. For o=1, we use (6.1) to compute p(y,s;). By
using (4.1), we computed the Bayes risk for our original problem with the stopping cost
d'(y,s). For N=1000, the boundaries using the backward induction method for K= 5, 10,
20, 50 are in Table 2 and are plotted in Figure 3. The difference between the continuous
time optimal stopping boundary and the boundary using the backward induction method is
plotted in Figure 4. The difference between the corrected continuous time stopping boundary

and the boundary using the backward induction method is plotted in Figure 5. These results
show that the corrected continuous time stopping boundary can be a good approximation to

the optimal group sequential stopping boundary. The Bayes risks ©x(0,¢) are tabulated in
Table 3 and are plotted in Figure 6, for K=5, 10, 20, 50, 100.

7. A Measure of Efficiency in the Bayesian Context.

For two procedure P, and P, we define the Bayes Efficiency of P, with respect to P, is

defined as follows:

ep(y,s)

BE(Pl,le(y,S))= op(yv.s) ’

where pp(y,s) is the posterior risk for procedure P at (3y,s). We define the percentage

loss of information denoted by PLI as
PLI= (1-BE)x100% .

For Bayes group sequential procedures, we will use PLI to measure the loss of information

due to grouping. For computation of BE, we compare pg(0,¢), K=5, 10, 20, 50 with
0100(0, ¢) as the base. The Bayes Efficiency and the percent loss of information, for K=35,
10, 20, 50 are plotted in Figures 7 and 8, which suggest that there is a significant loss of

information due to grouping from K=5 to K=10.
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Table 1. Continuous Time Optimal Bayes Sequential Boundary

¢ b(t) t b(t)
0.000001 4.747 0.16 1.234
0.000002 4.606 0.18 1.183
0.000005 4.412 0.20 1.136
0.00001 | 4.261 0.25 1.033
0.00002 4.102 0.3 0.947
0.00005 3.884 0.3 0.872
0.0001 3.711 0.4 0.804
0.0002 3.530 0.5 0.684
0.0005 3.279 0.6 0.577
0.001 3.077 0.7 0.474
0.002 2.865 0.8 0.370
0.005 2.566 0.85 0.314
0.01 2.326 0.9 0.251
0.02 2.074 0.95 0.174
0.04 1.808 0.97 0.134
0.06 1.646 0.99 0.077
0.08 1.529 0.995 0.054
0.1 1.437 0.999 0.024
0.12 1.359 0.9995 0.017
0.14 1.293 1.000 0.0
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Table 2. The Backward Induction and Corrected Continuous Time Boundary

t B.I BND Corrected Cont-B.I Corr-B.1
1.000 0.00000 0.00000 0.00000 0.00000
0.800 0.00400 0.10945 0.36600 0.10545
K=5 0.600 0.22170 0.28570 0.35530 0.06400
0.400 0.38467 0.46764 0.41933 0.08297
0.200 0.57400 0.72404 0.56200 0.15004
1.000 0.00000 0.00000 0.00000 0.00000
0.900 0.00600 0.06677 0.24500 0.06077
0.800 0.14708 0.17580 0.22292 0.02872
0.700 0.24341 0.26802 0.23059 0.02461
K=10 0.600 0.32823 0.35680 0.24877 0.02857
0.500 0.41591 0.44615 0.26809 0.03025
0.400 0.50800 0.54345 0.29600 0.03545
0.300 0.60968 0.65570 0.33732 0.04602
0.200 0.72973 0.79964 0.40627 0.06990
0.100 0.88600 1.02504 0.55100 0.13904
1.000 0.00000 (.00000 0.00000 0.00000
0.900 0.10182 0.11734 0.14918 0.01552
0.800 0.21600 0.22870 0.15400 0.01270
0.700 0.31430 0.32357 0.15970 0.00927
K=2 0.600 0.40876 0.41542 0.16824 0.00665
0.500 0.49964 0.50834 0.18436 0.00870
0.400 0.59397 0.60980 0.21003 0.01583
0.300 0.71035 0.72680 0.23665 0.01645
0.200 0.84800 0.87545 0.28800 0.02745
0.100 1.03520 1.10064 0.40180 0.06543
1.000 0.00000 0.00000 0.00000 (0.00000
0.900 0.16100 0.16510 0.05000 0.00410
0.800 0.27828 0.27901 0.09172 0.00073
0.700 0.37863 0.37690 0.09537 -0.00173
0.600 0.47104 0.47236 0.10596 0.00132
K=50 0.500 0.57000 0.56974 0.11400 —(.00026
0.400 0.67976 0.67687 0.12424 —0.00290
0.300 0.79783 0.80135 0.14917 0.00352
0.200 0.95501 0.96034 0.18099 0.00533
0.100 1.18064 1.19915 0.25636 0.01851
(.080 1.24400 1.26845 (0.28500 (0.02445
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Table 3. Bayes Risk ( N=1000 and o=1)

| ¢ 0x(0, ) 01000, £)
1.000 17.84124 17.84124
0.800 19.94413 19.00924
K=5 0.600 20.72656 19.71729
0.400 21.41810 20.00779
0.200 22.00463 19.50591
1.000 17.84124 17.84124
0.900 18.80417 18.50855
0.800 19.28009 19.00924
0.700 19.71605 19.40882
K=10 0.600 20.07546 19.71729
0.500 20.35382 19.92460
0.400 20.53382 20.00779
0.300 20.57943 19.91149
0.200 20.41521 19.50591
0.100 19.89269 13.37302
1.000 17.84124 17.84124
0.900 18.58906 i 18.50855
0.800 19.10467 19.00924
0.700 19.52879 19.40882
K20 0.600 19.86624 19.71729
0.500 20.10978 19.92460
0.400 20.23802 20.00779
0.300 20.20402 19.91149
0.200 19.89630 19.50591
0.100 18.96817 13.37302 J
1.000 17.84124 17.84124
0.900 18.52453 18.50855
0.800 19.03427 19.00924
0.700 18.44190 19.40882
K=50 0.600 19.75769 19.71729
0.500 19.97500 19.92460
0.400 20.07008 20.00779
0.300 19.99012 19.91149
0.200 19.60855 19.50591
0.100 18.51805 18.36337
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Figure 1. Continuous Time Standardized
Continuous Boundary

Figure 2. Standardized Corrected
Time Boundary
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Figure 4. Difference Between Continuous
Time Boundary and Backward
Induction Boundary
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