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A Diagnostic Method in Principal Factor Analysis
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Abstract

A method of detecting influential observations in principal factor analysis is
suggested. It is based on a perturbation of the empirical distribution function and an
adoption of the local influence method. An illustrative example is given.

1. Introduction

Principal factor analysis is one of the most widely used methods of reducing a large data
(Harman, 1976). It is usually performed using the sample covariance (or correlation) matrix
and does not need a distributional assumption for a descriptive purpose. It is well known that
the sample covariance (or correlation) matrix is very sensitive to influential observations.
Hence it is necessary to investigate the influence of observations on the parameter estimates
of principal factor analysis model. Tanaka and Odaka (1989) adopted the influence function
approach to investigate the influence of observations in principal factor analysis.

In this work we suggest a diagnostic method of investigating the influence of observations
on the parameter estimators of principal factor analysis model, using the local influence
approach by Cook (1986), Wu and Luo (1993). Jung et al. (1997) studied the local influence
method in maximum likelihood factor analysis. They considered the perturbation under the
normal distribution. However, principal factor analysis is free of a normal distribution
assumption and so we consider a perturbation scheme in which the empirical distribution
function is perturbed over all sample points. Under this perturbation scheme, the model
parameters are estimated. Then the perturbation vector and the perturbed estimator form a
surface in an appropriate dimensional Euclidean space. The curvatures and direction vectors
associated with a certain curve on the surface yield information about individually and jointly
influential observations.

In Section 2 we review principal factor analysis. In Section 3 a perturbation scheme is
considered and a diagnostic procedure for investigating the influence of observations is
described. Computations necessary for the diagnostic procedure are included in Section 4. An
illustrative example is given in Section 5.
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2. Principal Factor Analysis

Let x be a p-variate random vector having a distribution function F with mean vector g

and covariance matrix X, The factor analysis model can be expressed as
x= p+ Af + e,

where A=(A;) is the p by gq (¢<p) factor loading matrix, f is the ¢ by 1 vector of
common factors and e is the p by 1 vector of unique factors. We assume that the vector of
common factors f has zero mean vector and identity covariance matrix, and that the vector
of unique factors e has zero mean vector and diagonal covariance matrix
¥= diag (¢y,...,¢,). It is further assumed that f and e are uncorrelated.

The mean vector and covariance matrix for the distribution F can be considered as
statistical functionals denoted by w(F) and X(F), respectively. Statistical functionals for A

and ¥ can be defined appropriately using the following equations for principal factor analysis

model
- = ror’ o))
A= Ty 00" @)
¥ = diag(3—447), (3)
where @= diag(¢;,...,¢,) is the diagonal matrix whose diagonal elements are the
eigenvalues of X— ¥ with ¢;>>¢é,, I'=(71,..., 7, is the orthogonal matrix of the

eigenvectors corresponding to @, @, is the ¢ by ¢ diagonal matrix consisting of the

largest g eigenvalues and I'() is the p by ¢ matrix of the eigenvectors associated with

® ;). The identifiability of A is automatically ensured since ATA becomes a diagonal

matrix.
Let { x;,..., x,} be a random sample of size #» from the distribution F. The empirical
distribution function F based on { x,..., X,} is defined by putting mass 1/z on each
x, (u=1,...,n). Then pu( F) and X(F) are the sample mean vector x and covariance

matrix S=(s ;) with its divisor #, respectively. Then estimates of the factor loading matrix

A and the unique variance matrix ¥ are obtained by iteratively solving equations (1) to (3)
with X replaced by S.

Let D be the p by p diagonal matrix whose ith diagonal element is the reciprocal of
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square root of the ith diagonal element of S. Then the sample correlation matrix is given by
R= DSD which can be also considered as the value of an appropriate functional evaluated

at F. It can be used for performing principal factor analysis instead of the sample covariance

matrix.
3. Local Influence
A perturbation scheme can be characterized by a perturbation vector w= (wy, ..., w,,)T in
which the perturbation vector is expressed as w,=14ac, for u=1,..., n. The scalar a
represents the magnitude of the perturbation and the vector c¢= (¢, ...,C,,)T of unit length

its direction. Let #= 6(F) be a scalar functional of interest that can be an element of the
factor loading matrix A or a diagonal element of the unique variance matrix @ The
estimator of @ is written as & for the unperturbed model and as & w) for the perturbed
model. The perturbation scheme is chosen such that & equals  8( 1,), where 1, denotes the
unit vector of size » with all elements equal to one.

The (n+1) by 1 vector ( wT, 9( w))T forms a surface in the (2+ 1)-dimensional
Euclidean space as w varies over a certain space. The direction vectors of the surface at

w = 1, corresponding to the large absolute curvatures yield information about individually

and jointly influential observations. A plot of direction cosines of the first two direction
vectors in the plane is usually helpful for detecting influential observations. Observations

separated from the main body are locally influential around the point w = 1, and the

global influence of those observations can be confirmed by using single and multiple case
deletion diagnostics (Cook, 1986, p. 137).

The curvature and its associated direction vector of the surface at w = 1, are obtained
by solving the following generalized eigenvalue problem

|E—aB|=0, (4)

where E is the n by » matrix having 9 °89(w)/ow Jw w=1, as its (%, v)th element, B

- o C T - T -
is the »# by #» matrix given by (1+ 7 2 "“( I,+ 7 n ) and g is the » by 1
column vector whose wuth element is 9 8(w)/dw ] w= 1, The signed curvature of the

surface is given by the eigenvalue in (4) and the direction vector ¢ is its associated
eigenvector of unit length. This comes from the fact that the curvature is equivalent to the

value of ¢ Ec/ c "B c. For more details, refer to equations (2.2) to (2.5) of Wu and Luo
(1993) or equation (20) of Cook (1986).
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We consider a perturbation F » Of the empirical distribution function defined as follows:

F,, puts mass —17; on w, X,

for a given perturbation w. When w,=1 for all z, F _ reduces to F. The mean vector

and covariance matrix for F » are
e( F) = —}; Z‘.lwuxu
2(F)=LxH(wxX

where X=( xy,..., x,) and H( w)= diag( w wT)—w wT/n. When w;=0 and

w,=1 for all wu%i, observation x; is deleted in computing pu( F o) and X( F o)
Hence the above perturbation scheme includes the case deletion as a special case. Note that

observation x; is deleted whenever a=1, ¢,=—1 and ¢,=0 for all u+1.

4. Derivation

First we derive the first and second order partial derivatives of the perturbed sample

covariance and correlation matrices with respect to w, and w,, w, The first and second

order partial derivatives of S( w)= 2( F o) evaluated at w = 1, are computed as
-
igw_LZ”l —}{(2 X, qu— X, X — X x,,T)
w=1,
9°S(w) {_ZU;—_ZH TR if u=v
dw ., ow, 1 ——nl—z( X, va-i- X, qu) if w#v.

For each % and v, we will denote by S,=(s;,) and S, =(s; ) the first and second
order partial derivatives obtained above, respectively.
The perturbation of the sample correlation matrix R( w) is naturally obtained as
R( w)= D( w)S( w) D( w),
where D( w) is determined by S( w) in the same way as D. A little algebra yields

ﬂgfv_wl =pD,SD+DS,D +DS D,
u w= 1,
2
%w%g—w_wl = DuuSD+DSD“”+DuSUD

+DS,D,+ D,SD,+ D,S D,
+ D, S,.D+D S, D, +D S,D,
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where
p, = 2Dtw = diag( — 557 .)
u w=1,
_ 3:D(w) - 1 3w oo L -
Duv = awuawv = dlag( 4 Sig SiuSiv 2 Si Siuw )

=1,
Here diag( -) indicates the diagonal matrix whose sth diagonal element is given by that
surrounded by parentheses.

The investigation of the influence of observations in principal factor analysis needs the first
and second order partial derivatives of the perturbed estimators of the model parameters
obtained by solving ‘

S(w)— F(w) = T(w) ®(w) T (w 5)
I/\l( w) = 71(1)( W) /b(l) 1/2( w) 6)
F(w) = diag( S(w)— A(w) A (w)). )

The order of the column vectors ;\,»( w) of /I"( w) is determined by that of the column
vectors /r\, of 7‘ such that /7’\, = /7'\,-( w)l w= 1 and accordingly the order of the diagonal

elements ¢ { w) of /@( w) is determined, that is ¢; = & w)| we 1 When w = 1, the
above equations reduce to those for the unperturbed model. In what follows all derivatives are

evaluated at w = 1 ,.
4.1. Perturbed Principal Component Analysis

The subscripts % and v in a matrix have the same meaning as in S, and S, Let
/;' i be the ith column vector of 7’,, and 3,-‘,, the sth diagonal element of /70,,.
Differentiation of both sides in (5) with respect to w, gives
—~ T — —~ A~ T ~ —~~ o~ —~ T~ —~
r(s~-)r=r r,o+eo r, r+ o,. (8)

From the orthonormality condition on /\7,-( w), we have

-~ T ~ ~ T ~

7iu Y, t 7 Yiu = 0. 9
The comparison of the ith diagonal element of both sides in (8) with the help of (9) yields

Biu= 7 (S, T 7. (10)
Similarly the comparison of the (7,7)th element of both sides in (8) and then a simple
algebra give



38 Myung Geun Kim and Kang-Mo Jung

Y = 2 (33T (S- T e
Further differentiation of both sides in (8) with respect to w, yields
T s T=-T"T,0+0 T, T+ 0,, (12)
where S. = Sy— ,!\F,,,, and
So= Sw-T, 0, T-T, 2 T,'-T,9, T
-7 T.-T. o T.-To, T..

o~

Let @ iw be the ith diagonal element of /bu,, and /;',-, « the dth column of I,

Since equation (12) has the same form as (8), it can be solved analogously to the first order
case and therefore we have

/ai.uv = 7; S. r;t+ 2 ?n- Yiu Yiv (13
~ ~ T -~ ~ _
Yiw — —( Yiu Yiv ) 7t j*u=1( %— 2’,’) !
~ T ~ ~ T ~ —~ T ~ ~
X{ 7 s# 7j+ 3;( 7i,u 7j,v+ 7i,v 7j_u)} Yj- (14)
4.2. First Order Derivatives
Differentiation of both sides in (6) and (7) with respect to w, gives
— ~ —~ 1/2 ~ -~ -2
A, = Iy, Onp + —% rg o D). (15)
—~ . — —~ T — — T
¥, = diag( S,— A, A — A A, ). (16)

—~ ~ ~ 12
Putting (15), (10) and (11) into (16) and using A = Iy @@ , we get for all
m=1,...,p
~ T ~ A 2
/(Z'm,u = Swmmu_ 2( ri S 71’) 7 mi
= (17)

-2 B B= B T 5w YD) T Tt 2 Ph b

1=1 j¥t,1=1
. ~ 2 ~ 2 i /& /& . /& -1~ ~ ~ -~ -~ .
where &, = o Ve Vmi +21= v (@ /) Yhi Yk Ymi Ymis Pomuis
the mth diagonal element of ,@'u and Aym,- is the wmth element of v Thus we can

solve the linear equation (17) to get Q\/;k, » and then get ?J,-,u using (10), ’;',»,u using (11)

and finally 71 . using (15).
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4.3. Second Order Derivatives

The second order derivatives are obtained in the same way as the first order case. Further

differentiation of both sides in (15) and (16) with respect to w, yields

~ -~ —~ 2 —~ ~ -2~ ~ ~ -2~
Ay = T'hw P +~%‘ ry. @ 0(1).v+_%_ rgy, oo d’(x).u(lg)
—~ —~ ~3/2 o~ — 1 ~ —~ -1/2 -~
"Ti rg o Pwu Pwmotsy 'y Py D

T o~ —~ T — —

T, = diag( S,— A, A — A, A, - A, A, -A A0 19
By (18), (13) and (14), for m=1,...,p equation (19) becomes

am,m»: S mm,uv 12‘( /}iT SO ,}z) }miz
— ~ T ~
-2 ﬁ: 1%;’( 3;‘" ?’j) l{ ri So 7

t=1]1 j¥i,1=

~ T ~ ~ T ~ ~ ~
+ %]( 7{,u 7j,v+ 71',1) 7j,u)} 7mi 7»1)'

~ (20)
_zgm,uv_*- ;l ‘/Jk_uuémk s

Where é‘m,uu= g( lai /;'m:',u /S’mz'.u+ %z’,u /;’mi /}mi,v'*- /ai.v ,}mi /}mi,u)y /a'm,uu iS the mth

diagonal element of /@'w and A)’m,-_u is the wmth element of /;' iw Similarly to the first
order case, we first solve the linear equation (20) to get 7),,_ «» and then ?),-‘,,,, using (13),

Ar,-_ « using (14) and finally A W using (18).

5. Numerical Example

The local influence method is applied to the stiffness data set (Johnson and Wichern, 1992,
p. 162, Table 4.3) consisting of 30 measurements on four variables. The analysis will be

limited to the third unique variance based on the correlation matrix. Note that the g-factor
model makes sense if the degrees of freedom (p—q)2/2—(p+ @/2 = 0 (Harman, 1976, p.

205). For this data set the degrees of freedom is not negative only if ¢ = 1. Thus the
number of loading factors is assumed to be one.

The model parameter estimates are obtained first by setting ¢;=1/7" for i=1,...,4,

where »" is the ith diagonal element of R and then by iteratively solving equations (1)
to (3). The estimates of wunique variances based on the full data are

$1=0.0335, ¢,=0.2343, $3=0.1360 and ¢, =0.1235.
Figure 1 shows a scatter plot of 30 observations with respect to the first direction vector

versus the second direction vector for %3. The first two large curvatures including the sign
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are 1.0386 and -0.7062. Points separated from the main body around the origin in the scatter
plot may be noteworthy since they can be individually or jointly influential. Observations 2, 9,
21 and 29 are locally influential.

Next, the index plot of the values of the empirical influence function for ?)3 is inciuded in
Figure 2 following Tanaka and Odaka (1989). In this case the influence function method is
modified by substituting the empirical influence function of the sample correlation matrix for
that of the sample covariance matrix (Fung and Kwan, 1995). The visual inspection of Figure

2 indicates that observations 9 and 21 are influential for ¢s.
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Figure 1. The scatter plot of the first direction vector versus the
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Figure 2. The index plot of the empirical influence function for At/}g.
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Table 1 shows some results of single case (I), double case (II) and triple case (III) deletions
for /¢3. The number in parentheses is the estimate of ¢4 based on the data set after
removing the corresponding observations. In each column observations are arranged in the

decreasing order of the absolute difference between ¢3 and ¢s3(, where @3'(1) is the

estimate of ¢5 based on the deleted observations in the index set J.

I I I
9 (0.207) 9, 29 (0.254) 2, 9, 29 (0.305)
21 (0.090) 9, 17 (0.239) 2, 17, 29 (0.300)
16 (0.117) 2, 9 (0.238) 2,9, 17 (0.281)

Table 1. Multiple case deletions.

The single case deletion results are in parallel with those from the empirical influence
function values of Tanaka and Odaka (1989). They indicate that removal of observation 9

increases the value of ¢; while deletion of observation 21 decreases the value of ?5. Note

that observation 9 is locally influential along the first direction vector with positive curvature
while observation 21 along the second direction vector with negative curvature. Thus the sign
of curvature plays an interesting role. A similar phenomenon in the linear hypothesis testing
problem can be found in Kim (1998). The double and triple case deletions show that
observations 9, 29 and 2 are jointly influential. Note that these observations are locally
influential along the first direction vector. Observation 21 is not included in the sets of jointly
influential observations for the double and triple case deletions.

From this example we see that the local influence method provides information about
individually and jointly influential observations. However, the influence function method is not
sufficient for detecting jointly influential observations. For the other model parameters the
above method also yields useful information.
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