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ARMA Model Identification Using the Bayes Factor!
Young Sook Son!

ABSTRACT

The Bayes factor for the identification of stationary ARM A(p, ¢) models
is exactly computed using the Monte Carlo method. Asg priors are used the
uniform prior for (Qp, 8,) in its stationarity-invertibility region, the Jefferys
prior and the reference prior that are noninformative improper for (u,o.).

Keywords: Stationary ARMA model; Stationarity-invertibility region; Noninfor-
mative improper prior; Jefferys prior; Reference prior; Bayes factor, Posterior
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1. INTRODUCTION
Suppose that Zy, Zs,..., Z, follow a stationary ARM A(p, q) model,

®,(B)(Z, — 1) = Oy(B)er

where {e;} is a N(0,02) white noise, ®,(B) = 1 — ¢ B — ¢poB? — -+ — ¢, BP,
@q(B) =1- 913 - 9232 —_—— Hqu, and sy O'g, ép = (¢)1, ¢27 cay qﬁp), and Qq =
(61,02,...,0,) are all unknown parameters. For the stationarity and invertibility

of ARMA process (?ip’ 6,) must lie in the region C}, x Cy, where

Cp % Cy={(2,,8) : ®p() = 0, |&] > 1 and Oy(y) = 0, |y| > 1}.

The first step in the analysis of Box and Jenkins’ stationary ARM A(p, q)
models is to determine the autoregressive order, p, and the moving average order,
g, for model identification. There are several identification methods of ARMA
models(see Choi(1992) for them). But our interest in this paper is only on its
Bayesian procedure. As a Bayesian method for ARM A(p, ¢) model identification,
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there is a famous Schwarz(1978)’s SBC(Schwarz’s Bayesian Criterion) criterion
based on Laplace’s asymptotic approximation. In this paper we will introduce
other Bayesian criteria for ARM A model identification. To do this we need to
review the SB(C criterion.

The marginal or the predictive density of Z = (Z,,Zs,...,Z,)" under the
ARM A(p, q) model is defined by

M0 (2) = [ L B12) 0@ 1)

where § = (u,cre,ép,ﬂq) ; and L, (8] Z) and 7, 4)(0) are a likelihood function
and a prior density under the ARM A(p, q) model, respectively .

As a result of Laplace’s asymptotic approximation the marginal density of Z
is approximated as

-, = _1 ptg+2 Py
M(p,0)(Z) % {Lip,g) (AUZ) L (p,g)| 2} - {(2m) "2 79 (8)} (1.2)
where f(p’q) and 5 are the observed information matrix and the maximum likeli-
hood estimate(m.l.e.) of § under the ARM A(p, ¢) model, respectively. Ignoring
the term in the second brace of (1.2) and applying —2In function, the SBC cri-
terion is finally obtained by

SBC(p,q) =n- 1n€r?(p,q) +(p+qg+2)-Inn, (1.3)

where 62,  is the m.Le. of o2 under the ARM A(p, q) model.

Basic idea of model identification by the SBC criterion is to find p and ¢ to
maximize the marginal density, m, »(Z), of (1.1), i.e., to minimize SBC(p,q)
of (1.3). Some problems are often pointed out in Laplace’s approximation to
the SBC criterion. First, the second brace term of (1.2) can be a dominant
function for small n. Second, for nested models the SBC criterion to drop the
second brace term select more complex model.(Berger and Pericchi(1994)(1996))
Third, Laplace approximation starts from the nice condition that In L(§|Z) is a
smooth, bounded, and unimodal function with a maximum at the m.lLe., 5. But,
practically the maximum likelihood procedure sometimes fails to converge.

Qur goal in this paper is not to drop any term in the marginal density of
(1.1) but to compute exactly. Here, we use the uniform prior for (¢,60) in its
stationarity-invertibility region and the default Bayes priors, the Jefferys prior
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and the reference prior, that are noninformative improper for (u,o.). Then p
and ¢ are selected by posterior probabilities computed using Bayes factors.

The integral in the stationarity-invertibility region, C, x Cj, is computed
by Monte Carlo method using Jones(1987) algorithm for obtaining the ARMA
parameters, gép and 0,, uniformly from C, x (/;. Also to compute the inverse of
the covariance matrix of ARM A(p, g) process the closed form by Leeuw(1994) is
explicitly used.

Monahan(1983) dealt with the problem of model selection in a fully Bayesian
analysis of stationary ARMA models. He adopted as prior distributions the
uniform prior distribution for (Qp, 8,) in its stationarity-invertibility region and
the standard normal-inverse gamma conjugate prior for (u,o.). He proposed
the numerical integration method after transforming parameters to compute the
integral in the stationarity-invertibility region . But since the tramsformation
method is many to one, the computation of the integral is very tedious and not
automatic.

Varshavsky(1995) used the arithmetic intrinsic Bayes factor of Berger and
Pericchi(1996) to determine the order of trend and the autoregressive order in
the nonstationary autoregressive model with a trend. She assumed the uniform
prior for Qp in its stationary region, the Jefferys prior and the reference prior
that are noninformative improper for (u,c.) and the regression coefficient fina
trend. She computed the integral in the stationarity region, Cp, by Monte Carlo
method using Jones(1987)’ algorithm.

In the next section, the Bayes factor for the identification of ARM A(p, q)
models is constructed. In section 3, the procedure for computing the Bayes
factor defined in section 2 is introduced. In section 4, the method discussed in
this paper is applied to some time series data in Box and Jenkins(1978)’ and
Wei(1991)’s texts.

2. THE BAYES FACTOR
FOR THE IDENTIFICATION OF ARMA MODEL

The likelihood function of § = (u, oe, @p, f,) under the ARM A(p, q) model is
given by

2y—Trr—1 L 1

L(,Uﬂ Og, S_ép7 Qq) = (27‘-0-5) 2 ]‘/(p’q) I 2 exp{— 202

£

(Z - 1))V (2 - pl)}, (21)

where 1 is an n X 1 one vector and V, ,y is an n x n matrix composed of only
@p’Qq) such that Cov(Z) = 62V, -
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We will consider default noninformative priors of the form,

(1, 0c, 8, 04) = 7" (1, 0)7(2,8) (2:2)

where
(9,0, = ool
L’ Volume(Cp x Cy) ’

with Ic,xc, (épqu) =1, if (Qp,Qq) € Cp x Cg and 0, otherwise, and

WN(;J,,UE)OCF, —o< <o, 0<o. <o
&

with default choices of k being k = 1 in case of the reference prior and k = 2 in
case of Jefferys prior. Here 7 (-) denotes the noninformative prior. Now, from
(1.1), (2.1), and (2.2) the marginal density of Z under the ARM A(p, ¢) model is
defined by

N . o oo
m(p,q)(z) - /;}pxcqfo /;00 L(/‘Luamﬁpuﬁq | _Z)

N (11, 06)7 (9, 8,)ds doed dfy . (2.3)

Thus, after integrating over u and o, in (2.3), the Bayes factor of the ARM A
(p, q) model to the ARMA(p',¢’) is obtained as

m" o, ()

BV ' (Z) =
()@ m g 1(Z)

-1 1 _1 L(n+k—2)
Volume(C, x C) ™" Joyxe, [V 1)12(1V( DD TERE P ag dg,

=Vl OIXO/"I — 1 1 ,(n+k2) ?
olume(Cy 7) fcp,xcqf IV(p,Jq,)| Qv 1) zR( de

(p'g')= '.q')
(2.4)
where . ZIV ) (1’V(_1)Z)2
(pg) — (p, ) :
i v V(p f))"

Default or automatic priors such as the Jefferys prior or the reference prior are
used when subjective priors for each model are not feasible. But they are often
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noninformative improper priors. The main difficulty in developing the default
Bayes factor using the default improper prior is to be unable to determinc an
unknown arbitrary multiplicative constant of improper prior. 5o, an Improper
prior, 7% (u, o¢), of (2.2) can not be directly used in (2.3). But, Jefferys(1961)
discussed that arbitrary multiplicative constants for the improper priors would
be cancelled in Bayes factor in case of using noninformative improper priors for
common parameters in the models. Our problem is just applied to this case.

The Bayes factor reflects the support of two models by data. That is, if
the value of the Bayes factor B, gy ) 18 larger than 1, it implies that the
ARM A(p,q) model is more supported than the ARMA(p',¢") model by given
data.

Bayesian procedure of selecting a model among more than two models is to
choose the model that gives the maximum posterior probability P(ARM A(p, ¢)| Z)
with the prior probability, p(, q), of each model ARM A(p, q) being true, where

P(ARM A(p,q) | Z) _{Z "’))B(p,q)(p,q)}—l. (2.5)
( p’q

3. COMPUTATION

To compute (2.4) is reduced to solving two problems; the first is to get the
inverse matrix, V(_l), satisfying Cov(Z) = J?V(M) and the second is to compute
the integrals over ¢, andf,. The V(w 0 matrix can be explicitly expressed by only
qzﬁ and @, using the result of Leeuw(1994). Then the computation of the integrals
in (2.4) is equivalent to the problem of computing the integral of the form

/ 9(8,64) do df, (3.1)
Gy

xCy Volume(C x Cq) —P

where g(¢ ,Hq) is a function of only gbp and g,

To compute (3.1) we use the method by Monahan(1984) and Jones(1987) of
randomly choosing parameters from the stationarity-invertibility region of ARMA
Process.

There is one to one transformation between Qp = (¢1,¢2,...,¢p) and the
partial autocorrelation Y, = (Y1,72,---»¥p) that maps C, onto [-1,1]7. Let

g(k) = (y (),yg , - .,y,gk)), k= 1,2...,p. Then y(k) is calculated from the

kA
recursive relation,
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k ke~ k— ;
g = =D oD 1 k-, (3.2)

with ygl) = -1 as the initial setting and y,(ck) = v, as the Anal setting. Finally, set

¢, =y®). For example of p = 3, ¢1 = 71 — 1172 — 1273, b2 = 72 = 1173 + NY2%s,
and ¢3 = 3. The Jacobian of the transformation is

Jp(lp) = ]___[2:2(1 — 7k)[§](1 + ,Yk)[%(kml)]

=Ty By, (BGk+ 1)), (3K +1),

where B, (a1, 00) = (14 1) (1 — %)%~ is a kernel of the rescaled beta
density of ;. defined on [—1,1] with parameters a; and as . The relation be-
tween 0, = (61,60,...,6,) and the partial autocorrelation v, = (Y1,72- -+ Yq)
that maps C; onto [—1,1]9 is similarly developed as that of Qp and Xy Thus a
numerical calculation of the integration in (3.1) can be done through

/ Jp(lp)‘]q(lq) i
[—1,1]p+a TWpr Volume(Cp x C,) Ty -

where Volume(C, x C,) ™" is a product of normalizing constants of the rescaled
beta densities defined on [-1,1] with parameters ([3(k + 1)],[5k] + 1), k =
2,3,...,0, E=2,3,...,q.

Now, the Monte Carlo method for computing the integral of (3.1) yields the
following algorithm.

STEP 1 : Generate v;’s (k = 1,2,...,p) independently from a rescaled beta
distribution defined on [—1,1] with parameters [3(k + 1)] and [1] + 1.

STEP 2 : Replace Qp in g(fp, 8,) by Yy according to the relation (3.2) between
Qp and Yy

STEP 3 : Generate v’s (k = 1,2,...,q) independently from a rescaled beta
distribution defined on [~1,1] with parameters [£(k + 1)] and [£k] + 1.

STEP 4 : Replace 8, in g(@p, 8,) by 2, according to the relation (3.2) between
8, and Yy
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STEP 5 : After iterating N times from STEP 1 to STEP 4,

1N
N Z g(lpja lq])
=1
is obtained as an estimate of the integral in (3.1).

4. APPLICATION

We apply the ARMA model identification procedure discussed in this paper
to four time series data in Box and Jenkins(1978)’ and Wei(1991)’s texts. Assum-
ing the uniform prior for (QP,Qq) in its stationarity-invertibility region and the
Jefferys prior and the reference prior for (i, 0.), the Bayes factors for 15 models,
ARMA(p,q), for (p,q) € J = {(4,7) :+=0,1,2,3, 7 =0,1,2,3, (4,7) # (0,0)},
are computed from (2.4), respectively, and then the posterior probabilities for
each model are directly obtained from (2.5).

For the prior probabilities there are often two alternatives. One is to assign
equal probabilities to all models, thus

P(ARMA(p,q) | Z) ={ Z B(p’,q’)(p,q)}_1 .
(P'.q)

Another is to assign unequal probabilities according to the principle of pa-
rameters parsimony. Then the prior probability for the ARM A(p, g) model can
be assigned as

Plg) = (p+q.()_1. .
’ Sgyesi )7t

Table 4.1-4.4 show posterior probabilities computed for 15 ARMA models
under the equal and the unequal prior probability for each model. We can know
that two priors give about the same results. All the computations are carried
using the IMSL subroutines on a UNIX workstation. For the comparisons in
each table are shown Akaike(1974)’s AIC criterion and SBC criterion computed
through PROC ARIMA procedure of SAS/ETS software. In each table, * is
marked for the ARMA model that the maximum likelihood estimation may not
converge and ** is marked for ARMA model that the maximum likelihood es-
timation algorithm did not converge. For such models we often doubt all the

results of estimation including AIC and SBC.
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The posterior probability of each model is computed and checked every 100 it-
erations for its stability. Table 4.5 shows the sample size, the number of iterations
for the stability, the computer time required and the selected model that gives
the maximum posterior probability. Model identification method introduced in
this paper requires much more computer time than the AIC criterion or the SBC.
But this method can be applied to time series data with the small sample size or
the moderate sample size, while results by the maximum likelihood estimation
require large sample size since the maximum likelihood estimation for the ARMA
model holds under the asymptotic assumption. Also our experiment for a number
of simulated data shows that this method select simpler model.

Table 4.1: Posterior probabilities for the ARMA. (p, ¢) model.(Data source: Box
and Jenkins(1978)’s Series-E)

ARMA Equal Probability Unequal Probability
(p,q) AIC SBC  Jeffreys Reference Prior Jeffreys Reference
(1,0) 901.81 907.02  0.000 0.000 0.163  0.000 0.000
(2,0) 835.23 843.05 0.073 0.075 0.061 0.112 0.115
(3,0) 832.99 843.41 0.076 0.077 0.054  0.078 0.079
(0,1) 904.97 910.18  0.000 0.000 0.163  0.000 0.000
(0,2) 850.83 858.64  0.000 0.000 0.081  0.000 0.000
(0,3) 841.47 851.89  0.005 0.005 0.054  0.005 0.005
(1,1) 846.82 854.63  0.000 0.000 0.081  0.000 0.000
(
(

1,2)  836.93 847.35 0.051 0.053  0.054  0.052 0.054
1,3)  837.76 850.79  0.012 0.012  0.041  0.009 0.010
(2,1)  831.05 841.47  0.586 0.579  0.054  0.602 0.594
2,2)  832.68 84570  0.005 0.005  0.041  0.004 0.004
2,3)  834.67 850.30  0.029 0.030  0.033 0.018 0.019
3,1) 83489 847.92 0.122 0.123  0.041  0.094 0.094
3,2) 83409 849.72  0.041 0.041 0033  0.025 0.025
3,3)%  836.41 854.64 0.000 0.000  0.027  0.000 0.000
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Table 4.2: Posterior probabilities for the ARMA (p, ¢) model.(Data source: Box
and Jenkins(1978)’s Series-F)

ARMA Equal Probability Unequal Probability
D, q) AIC SBC  Jeffreys Reference Prior Jeffreys Reference

1,0) 535.96 540.45  0.250 0.252 0.163  0.440 0.441
; 535.66 542.40  0.128 0.128 0.081  0.113 0.112
, 537.65 546.64 0.014 0.015 0.054  0.008 0.009
, 540.03 54452  0.024 0.025 0.163  0.042 0.043

936.71 543.45 0.173 0.172 0.081 0.152 0.151
537.78 546.77  0.026 0.026 0.054 0.015 0.015
536.14 542.88  0.105 0.105 0.081  0.092 0.092
937.55 546.55  0.043 0.043 0.054  0.025 0.025

0.044 0.045 0.041 0.019 0.020
537.65 546.65  0.084 0.084 0.054 0.049 0.049
539.54 550.78  0.061 0.061 0.041 0.027 0.027
541.37 554.86  0.004 0.004 0.033 0.001 0.001
539.44 550.68  0.017 0.017 0.041  0.007 0.007
041.34 554.84  0.026 0.026 0.033  0.009 0.009
(3,3)*  543.33 559.07  0.000 0.000 0.027  0.000 0.000

Table 4.3: Posterior probabilities for the ARMA (p,q) model. (Data source:
Wei(1990)’s Series-W1)

* *
*

PN TN ST TN TN T TN T TN TN N N N e
wwwwt\:n—-la:—loooww
Bo = & B = Wb = O D

e e e e e et e e [ e e | e

ARMA Equal Probability Unequal Probability
(p,q) AIC SBC  Jeffreys Reference Prior Jeffreys Reference
(1,0 62.07  65.68 0.369 0.367 0.163  0.545 0.542

63.66  69.08 0.121 0.120 0.081  0.089 0.089

64.46  68.08 0.078 0.079 0.163 0.115 0.117
64.56  69.98 0.040 0.041 0.081  0.030 0.030

)
)
(3,0) 65.66  72.89 0.018 0.018 0.054  0.009 0.009
)
)
) 66.01 73.23 0.017 0.017 0.054  0.009 0.009

(1,1) 63.69  69.11 0.160 0.160 0.081  0.118 0.118
(1,2) 65.60  72.87 0.064 0.064 0.054 0.031 0.032
(1,3) 67.55  76.59 0.009 0.009 0.041  0.003 0.003
) 65.66  72.89 0.057 0.056 0.054  0.028 0.028
)* 66.06  75.09 0.010 0.010 0.041 0.004 0.004
)* 70.17  81.01 0.003 0.003 0.033 0.001 0.001
)* 66.34  75.38 0.029 0.030 0.041  0.011 0.011
)* 68.26  79.10 0.026 0.026 0.033 0.008 0.008
) 71.07  83.72 0.001 0.001 0.027  0.000 0.000
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Table 4.4: Posterior probabilities for the ARMA (p,q) model.

Wei(1990)’s Series-W5)

Young Sook Son

(Data source:

ARMA Equal Probability Unequal Probability
(p,q) AIC SBC  Jeffreys Reference Prior Jeffreys Reference
(1,0) 137.89 141.00  0.217 0.221 0.163  0.467 0.473
(2,00*  139.72 144.38  0.055 0.057 0.081  0.059 0.061
(3,0) 137.76 143.98  0.152 0.150 0.054  0.109 0.107
(0,1)*  191.16 194.27  0.000 0.000 0.163  0.000 0.000
(0,2) 172.30 176.97  0.000 0.000 0.081  0.000 0.000
(0,3)*  158.11 164.33  0.000 0.000 0.054  0.000 0.000
(1,1) 139.79 144.45  0.040 0.041 0.081  0.043 0.044
(1,2) 137.86 144.08 0.179 0.176 0.054 0.128 0.126
(1,3) 139.80 147.58  0.060 0.058 0.041  0.032 0.031
(2,1) 139.89 146.11  0.037 0.038 0.054  0.027 0.027
(2,2) 139.80 147.57  0.101 0.100 0.041  0.055 0.053
(2,3)* 141.81 151.14  0.027 0.027 0.033 0.012 0.012
(3,1) 139.75 147.53  0.113 0.111 0.041  0.061 0.059
(3,2)** 0.012 0.013 0.033  0.005 0.005
(3,3)* 142,76 153.64  0.007 0.008 0.027  0.003 0.003
Table 4.5: Result of ARMA(p, q) model identification.
Time Series Sample Number Computer Selected
Data Size  of iterations Time Model
Series-E 100 400 80 minutes ARMA(2,1)
Series-F 70 100 9 minutes AR(1)
Series-W1 45 200 5 minutes AR(1)
Series-W5 35 1000 15 minutes AR(1)
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