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Correspondence Analysis of Two-way Contingency
Tables with Ordered Column Categories

Kyung-Sook Yang' and Myung-Hoe Huh?

ABSTRACT

Correspondence analysis is an exploratory method for two-way contin-
gency tables intended to display the association pattern between row and col-
umn categories. It has been developed for several decades mainly in France
and Japan and, nowadays, is popular worldwide. For the special case, how-
ever, that the column consists of ordered categories, correspondence analysis
may yield ackward result so that it cannot be fully accommodated. That’s
because the row and column categories are assumed to be nominal in the
ordinary correspondence analysis.

The aim of this study is to develop the correspondence analysis for two-
way contingency tables with ordered column categories. It is based on two
specific algorithms, “optimal scaling” for the first principal axis and “partial
scaling” for the remaining principal axes, that we propose in Sections 2 and
3. As by-product, matrix decomposition for two-way tables is produced in
Section 4. A numerical illustration is given and discussed in Section 5.

Keywords: Correspondence Analysis; Ordered Categories; Dual Scaling; Optimal
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1. INTRODUCTION

Correspondence analysis was conceived in as early as 1930’s and developed
from late 1950’s mainly by French researchers under the name “Panalyse des
correspondances” and by Japanese scholars under the different name “Hayashi’s
quantification ITI” (Hayashi 1952). Also, there appeared mathematically equiva-
lent forms of correspondence analysis for two-way contingency tables elsewhere,
such as “homogeneity analysis” in the Netherlands and “dual scaling” in Canada
(Greenacre 1984, Nishisato 1980).
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For the ordinary correspondence analysis of two-way contingency tables, we
use the following notations:

F ={fij}: two-way contingency table with n rows and ¢ columns.
fiv = X321 fijy i=1,---,n: row margins.

fa5 =201 fij, 7=1,---,¢ : column margins.

N =%, %I, fij : total frequency or sample size.

We assume that the row denotes subgroups one of which N units are classified
into, and that the column denotes categorical characteristics or responses of each
unit. Then, the multinomial composition of the i-th subgroup is represented by
row profile vector of size ¢

a; = (fi, -, fijy- o Jig)t/ fir, i=1,--,n

of which g components sum to 1. Hence row profile vectors a1, -+, a4, - -, ap lie
on the (q — 1)-dimensional simplex embedded in R?. For the homogeneity of n
row profile vectors @y,---,aq, -, @,, we may define the index “phi”

n \ q

¢= Z Ty (Z(aij - a.j)2/Cj),

i=1 j=1
where r1,---, 7, -, are weights for the rows, c¢i,---,¢j, -+, ¢q are scales for
the columns, both of which are to be clarified shortly, a;1,- -, a;q are elements of
a; and

n n
a; =) riag/y r, =14,
=1 i=1

the weighted average of a;;'s for i =1, n.
For row weights r;(i = 1,---,n) and column scales ¢;(j = 1,---,q), it is
natural to set

TiIfi+/N, 7::1,--‘,77;; C]=f+]/N’ j:lj...,q,

as suggested by Lebart et al. (1984) and Greenacre and Hastie (1987). One of
the attractive properties by such choice is that Pearson’s chi-square statistic

L (fij — fir f+i/N)?
— fisfi/N 7

X2

T

1

1j

15 expressed as

e it (fij/ fix — F+i/N)?
¥ =Ng (=NY Y I )
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Therefore, Pearson’s x? is a measure of dispersion of row profile vectors a1, -,
ai, - ,an from their centroid ¢ = (c1,-- -, ¢j, -+, ¢q)?, where

c=a = (0.1,"',a.j,'-',a,q)t-

More explicitly,
n
X2/N =D ri(a; —¢)'D ' (a; — ),
i=1

where D, = diag(cy, -+, ¢4, -, ¢q) is the ¢ X ¢ diagonal matrix of column scales
(Greenacre and Hastie 1987).

As mentioned before, correspondence analysis can be derived in several modes.
In this study, we follow two modes - linear projection and dual scaling. Linear
projection method can be formulated as (Lebart et al. 1984, pp. 30-44; Greenacre
1994, pp. 24-31)

1) Project centered row profile vectors a; — ¢ (i = 1,---,n) on unit-normed
v in the scaled Fuclidean space, e.g. v'D1v = 1.

2) Maximize the weighted sum of squared projections with respect to v, with
weights r; (1 = 1,---,n) to the row profiles:

mazy || BD7 v |3, subject to v*D v =1,

where || z |3 = 2!Dz and B is the n x ¢ matrix of centered row profiles:
ai — ¢

B=| at — ¢ | =D7*F/N —rct).
¢
3) Display the row subgroups and column categories in a lower-dimensional

plane.

It turns out that the scaled principal direction vectors (= D 12

tained via the eigensystem of G*G, where

G =DY?BDp;?.

v) can be ob-

Then, the standard column scores y such that ¢y = 0 and y'D.y = 1 are
obtained by
y= D" =D;lv,

And, the principal row scores are given by
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=By .
Principal row score vector  satisfies 7'z = 0 and x'D,x = )\, an eigenvalue of
G'G.
Dual scaling method due to Nishisato(1980) is rather numerical while the
linear projection method is geometrical. The steps of dual scaling for principal
row scores & and standard column scores y are

0) Assign standard scores y : ¢ x 1 (c'y = 0, y'D.y = 1) to the column

categories.
1) Then, row subgroups are quantified by principal scores
& = By = D;7Y(F/N)y. (1.1)

2) Now, the standard scores y to column categories are adjusted by

y o« D7YFY/N)x, or y= D 1B'D.x/), (1.2)
where
M =g'D,BD;'B!D,x.

3) Repeat step 1 and step 2 until the principal inertia of =, £*D,x, does not
increase further.

It is well known that the two methods yield the same results (Nishisato 1980, pp.
54-73): The standard column scores y and the principal row scores & are given
by

y=D;"*3, x=By,

where @ is an eigenvector of G'G.

Despite the well-established theory and accumulated experience in empirical
research, correspondence analysis may not be acceptable in certain situations
when applied to the two-way contingency tables with ordered column categories.
That’s because the ordinary correspondence analysis does not incorporate the
data characteristic such as ordinal nature of the column into the data analysis.

The aim of this study is to develop the special correspondence analysis for
two-way contingency tables with ordered column categories. In Sections 2 and 3,
the dual scaling method supplemented by linear projections will be proposed to
produce order preserving first principal axis for column categories and comple-
mentary principal axes for recovery of full information in the two~way contingency
table. In Section 4, a special matrix decomposition formula for two-way contin-
gency tables will be produced. In Sections 5 and 6, a numerical example will be
given with discussions followed by concluding remarks.
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2. OPTIMAL SCALING OF THE FIRST PRINCIPAL AXIS

When column categories of the two-way contingency table are ordered, stan-
dard column scores y1,-- -, yq, elements of y, of the first principal axis should be
in compliance with the constraint

1< <yYg OF Y1z 2 Yg (2.1)

We propose the following algorithm for the optimal scaling of the first prin-
cipal axis that preserves the order in column categories.

Algorithm OS (Algorithm for the optimal scaling of the first principal axis):

08-0. Calculate principal row scores  and standard column scores y from the
ordinary correspondence analysis of F'.

0S-1. If y = (y1, -, yq)* satisfies (2.1), then put V.= z, y(1) := y and stop.
Otherwise, apply the weighted least squares monotone fitting: That is,
wherever the ordinal compliance is broken, replace the adjacent scores by
their weighted average (with weights proportional to respective marginal
frequerncies), obtaining yT.

0S-1'. Normalize y' by applying yt:= y“/\/nytDcyT .
08-2. Substitute y' for y in (1.1) and compute the principal row scores x7 :
z! = Byt .
08-2". Substitute 21 for 2 in (1.2) and compute the standard column scores y:

y* = D7IBD,wt /Al

where AT = \/.'):TtD,qBDC_IBtD,nw‘”s .
08-3. Update the standard column scores y by y'.

08-4. Repeat Steps O0S-1 to OS-3 until the principal inertia of a:,:cTtD,.:cT,
does not increase and the score vector y changes little. Finally, quit the
algorithm after setting

) =gty =yt (not y*),
so that the first-axis column scores y!) satisfy the constraint (2.1).

Algorithm OS is not the first one for optimal scaling of ordered categories.
Nishisato and Arri (1975), among others, solved the same problem and proposed
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an intuitively appealing algorithm, “Successive Data Modification”, which seems
basically equivalent to ours. See Nishisato (1980, Section 8.1). But, the main
advantage of the Algorithm OS is that it pursues the same geometrical approach
as the ordinary correspondence analysis reviewed in Section 1, while Nishisato
and Arri’s orientation is rather numerical.

3. PARTIAL SCALING OF THE REMAINING AXES

Correspondence analysis, like principal component analysis, is a dimension
reduction technique. So, fixing the first principal axis on the (¢ — 1)-dimensional
simplex, we may pursue further exploration for the remaining principal axes to
view multinomial row profiles more completely. For principal component analysis,
the second author attacked the similar problem (Suh and Huh 1997).

Since y(1) was obtained from Algorithm OS and

g = D750 = p-1yM)

the principal direction vector »(!) in R? is determined. Then, by projecting the
rows of B on v(1), we obtain the “fits” and the “residuals”: The fitted matrix
B and the residual matrix B® are, respectively,

B = BD oMyt B = g B,

Now, to look for the second principal direction vector v(?) that maximizes the
sum of squares of projections of the rows of B (2) on it, we formulate

mazye | BOD1w@ |3 subjectto »@D;lp? =1.

Similarly, we may pursue the third, the fourth, and all the remaining principal
axes to have nothing left in the matrix B of centered row profiles, leading to the
following algorithm.

Algorithm PS (Algorithm for the partial scaling of the remaining axes):
PS-1. Fit B(= BMW) by B, yielding the residual B ;: B = B 4 BX),

And set k = 2.
PS-2. Fit B*®) by B®) yielding the residual B*+1) . Bk = Bk) 4 pk+1)
where

B = B D-1y(B)y ()t = B) p7L/25k) k) DL/

and %) = D7 Y24(k) is the principal eigenvector in the eigensystem of
GR Gk for Gk = D%/zB(k)Dc_l/z. Increase k by one.



Correspondence Analysis 353

PS-3. Repeat PS-2 for k = 2 to ¢ — 1, where ¢ — 1 is the assumed rank of B.
Hence B9 = Onxg-

It is not difficult to show that 'v(l), v@ ... w1 are orthogonal to each other
in the scaled Euclidean space: v\)*D o) =0, j # k. See Yang’s dissertation
(1998) for details.

From the Algorithm PS, we obtain standard column scores y®) and the prin-
cipal row scores 2(®) where

z®) = By(®)

b

fork=2,---,9— 1. Since
k-1
B=BW4...4 Bk-1) L Bk = Z B(l)Dc_lfv(l)'v(l)t + BU)
=1

the principal row scores ) is equal to
k—1
=1

For later use, define
u® —2®) /A k=1,2,--,9—1

where A\, = 28D, z(*F). Since A\y’s (k=2,---,¢—1) are principal eigenvalues of
G G or eigenvalues of G’ G2,

Ag 22 Ayt -

4. DECOMPOSITION OF TWO-WAY TABLE MATRIX AND
GOODNESS-OF-APPROXIMATION
From the Algorithm PS, we obtain the recursive formula
B®) = Bk) 4 plk+1) (4.1)
fork=1,2,---,q— 1, where B1) = B and Bl = Onxq- Hence
B=BW4+B® 4+...4 Bl
where
Bk) — ]3(’6)1),:—1/25(k)g(k)tpg/2 = u®) /2, yFtD,.

Therefore, we obtain a matrix decomposition of BD_! or
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q—1
DyY(F/N —reyD7t =Y u® /N ¥ =UD Y7, (4.2)
k=1

where
U=(uW, - ueD), Ds= diag( M2, -- .’)\3/_21), Y = (y®,... yla-D)y

Here, we note that

1 if k=1
(kD 4 = pEtp-i,0) = ’ . =12 .. g—1.
Y Y v\rEDT Y {0 Iy for k, ,2,-00,¢
But, it can be shown that (Yang, 1998)
1 if k=1 for kI1=1,2,---,q—1
u®tp o =¢ o if k#£1 for ki=2--,9—1

nonzero if k#[! for k=1 or [ =1

in general.
From (4.2), we have the expression for the cell chi-square values of the two-way
contingency table:

D7 V4(FIN —re)D;Y? = DY2(UD YD

or
-1
fij /N — 'T‘iCj ? \/—
Lt = rae; AE Uik Yik |-
NS CIPRLRED
When we represent the row profiles in s-dimensional subspace spanned by the
columns of V;, = (v(l), e ,'u(s)),s =1,2,---,g— 1, we may define the goodness-

of-approximation index by

GOA _ ” B‘DC_I(V‘; . Oqu—l—s) ||%r
& = —
| BDZ Vg1 113,

b

where || M |4 = trace(M*DM). Then,

coh. = 1UDRY Del¥s : Ogxg-1—s) 1D,
¢ | UD 5YD.Y |3,

s
Ak

- ” Udlag(‘\/xlj T, \/XS707 T 70) HZD.,. — kz:;.
TUD 4 1%, ol
> M

k=1

no matter what the values of u®* D, u(t) for k =2,---,¢ — 1 are.
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5. A NUMERICAL ILLUSTRATION

Table 5.1 came from a comparative studyof fourdrugs for effectiveness
(Greenacre 1984, p. 263). Each subject from a study panel of 121 patients was
randomly assigned to one of drugs, treated with the drug, and the effect was
meagsured. Scale of measurement was five-point Likert scale from Poor(=1) to
Excellent(=5). Pearson’s x? (d.f. 12) is 47.1 with p-value < 0.01%. Hence, we
may conclude that there exists some difference in drug effectiveness.

Table 5.1: Comparison of Four Drugs

Poor Fair Good V. Good | Excel. Total
drug A 5 1 10 8 6 30
drug B 5 3 3 8 12 31
drug C 10 6 12 3 31
drug D 7 12 8 1 1 29
Total 27 22 33 20 19 121

Even though the chi-square test tells us statistical significance for the as-
sociation between drugs and their effectiveness, it does not show the pattern of
association. Hence, there is the need for data exploration. Surely, correspondence
analysis is one of promising methods for the task.

First, the ordinary correspondence analysis is applied to the 4 x 5 table.
For two-dimensional reduction(s = 2), the goodness-of-approximation GOA; is
equal to 98.2 %. Despite of high GOA, the first-axis standard column scores are
not monotonic. See Table 5.2. Scores for category 1(=Poor) and 2(=Fair) are
inconsistent with the inherent order in the column: Poor < Fair < Good < Very
Good < Excellent.

Second, the special correspondence analysis is computed by Algorithm OS
and Algorithm PS proposed in Sections 2 and 3. Now, the GOAs is equal to 96.4
%, a bit smaller than that of ordinary correspondence analysis. In return, as can
be seen in Table 5.2, the first-axis standard column scores are congruent with the
order in the column, with ties at Poor(=1) and Fair(=2).

Figures 5.1 and 5.2 show two-dimensional quantification plots for principal
row scores and standard column scores. Both plots look similar, in that the first
principal axis of both plots denotes the general direction of the drug effectiveness.
However, the direction is more lucid in Figure 2. Also, the second principal axis
of Figure 2 plays some role in showing the U-shape or horse-shoe effect (Maridia,
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Kent, and Bibby 1979). One peculiar pattern in this horse-shoe is that “Fair”
is at the left end of curve instead of “Poor”, indicating that drug C draws the

largest frequency of “Poor”, even though the general ranking of C is the third,

not the fourth.

Table 5.2: Principal Row Scores and Standard Column Scores

Row Scores Column Scores
| Dim1 | Dim?2 | Dim 1 Dim 2
A 0.3493 -0.3012 1 -0.4469 -0.2682
Ordinary B 0.7040 0.2460 2 -1.1637 1.5946
Correspondence | C -0.4549 -0.2480 3 -0.4849 -1.0737
Analysis D | -0.6277 0.3137 4 1.0560 -0.5635
5 1.7131 0.9927
A 0.3073 -0.3489 1 -0.7616 -0.3316
Correspondence | B 0.7159 0.1109 2 -0.7616 1.8289
Analysis with C -0.4993 -0.1707 3 -0.5381 -0.9094
Column-Order | D -0.5494 0.4248 4 1.0549 -0.6782
5 1.7883 0.6470

Note: A=Drug A, B=Drug B, C=Drug C, D=Drug D; 1=Poor, 2=Fair, 3=Good, 4=Very

Good, 5=Excellent.
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Figure 5.1: Row and Column Plots of Ordinary Correspondence Analysis (A =
0.305(78.32%), A2 = 0.078(19.88%))
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Figure 5.2: Row and Column Plots of Correspondence Analysis with Order-
Preserving First Principal Axis(A; = 0.291(74.78%), A2 = 0.084(21.60%))

6. CONCLUDING REMARKS

For the two-way contingency tables with ordered categories, we developed
a special correspondence analysis that quantifies the column categories in given
order, using Algorithms OS (Optimal Scaling) and PS (Partial Scaling). When
the row, not the column, has ordered categories, the technique proposed in this
study can be applied by exchanging the row and the column.

In the future, one may consider the case in that both the row and the column
have ordered categories. We speculate that there seems no way that quantifies
both the row and column categories in given order by Euclidean geometry. It
deserves further research.
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