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Robust Simple Correspondence Analysis'
Yong-Seok Choi! and Myung-Hoe Huh ?

ABSTRACT

Simple correspondence analysis is a technique for giving a joint display
of points representing both the rows and columns of an n x p two-way con-
tigency table. In simple correspondence analysis, the singular value decom-
position is the main algebraic tool. But, Choi and Huh (1996) pointed out
the singular value decomposition is not robust. Instead, they developed a
robust singular value decomposition and provided applications in principal
component analysis and biplots.

In this article, by using the analogous procedures of Choi and Huh (1996),
we derive a robust version of simple correspondence analysis.

Keywords: Correspondence analysis; Eigen system; Principal component analy-
sis; Robust version; Singular value decomposition.

1. INTRODUCTION

Simple correspondence analysis is a technique for giving a joint map of points
representing both the rows and columns of an n x p two-way contingency ta-
ble. For a Burt table which comprises all two-way contingency tables, Greenacre
(1984, Chapter 5) and Lebart et al. (1984, Chapter 4) describe the so-called
multiple correspondence analysis which is an extension of simple correspondence
analysis.

It is well known that the simple correspondence analysis of two-way contin-
gency tables is similar in spirit to principal component analysis (Mardia et al.,
1979, pp. 237-238; Greenacre, 1984, p. 346; Lebart et al., 1984, Chapter 2;
Jolliffe, 1986, pp. 85-86). Moreover, for the simultaneous display of rows and
columns of an n X p contingency table in simple correspondence analysis, the
singular value decomposition is adopted as the main algebraic tool. But Choi
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and Huh (1996) pointed out that the singular value decomposition is not robust.
Thus, simple correspondence analysis based on the singular value decomposition
does not always give desirable results.

In Section 2, we derive a robust simple correspondence analysis based on the
robust eigensystem. In Section 3, we provide a robust singular value decomposi-
tion for a simple correspondence analysis. In Section 4, a numerical illustration
is given. Finally, the details of the minimization problem of Section 2 are given
in the Appendix.

2. ROBUST SIMPLE CORRESPONDENCE ANALYSIS

Consider the n x p data matrix O = (0;5),05 > 0,7 =1,...,n;5 = 1,...,p,
which is in the form of two-way contingency table of counts. Each row of O may
be viewed as the realization of a multinomial distribution, conditional on the
respective row sum. We shall denote the overall total simply by 0,4 = 17,01,
where 1, and 1, are n x 1, p x 1 vectors with n and p ones respectively. Note
that the correspondence matrix F is define as

F= (fij)7 fz] = Oij/0++’ 1= 15“'377'; .7 = 1a <y P

Let r and ¢ be row and column sums of F respectively;
r= Flp = (f1+7 S fn‘f')’) c= Flln = (f-i-l: ) f-i-p),a

where fii = 35 fij (i = 1,..,n) and fi; = 31, fi; (7 = 1,-..,p). We shall
denote the respective n x n and p X p diagonal matrices with elements f; and

fei by
D, = diag(r), D. = diag(c).
Let A be the n x p row profiles matrix defined as
A =DI'F=(ay,..,a,), (2.1)

where a; = (fi1/ fi+, - fip/ fi+)' is the i** row profile vector.

Consider the p-dimensional space defined by metric D;!. We call it the
weighted Euclidean space £P. In the row profile matrix (2.1), each of the row
profiles a;, ..., a, can be represented by points in £”. The squared distance be-
tween two profile points a; and a; is given by

di(aj,ay) = (a;i—ay)'D; (a; — ay),

= Z(fij/fi+ — fi’j/fi’+)2/f+j'
J
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v

For the same profiles a; = a;, d;(ai,air) = 0. The above squared distance is
called the chi-square distance or chi-squared metric. The choice of this distance
guarantees a certain stability of the results no matter how the variables were
originally coded (Lebart et al., 1984, p. 35).

So far we have defined the set of profile points with masses, which will be
defined later, in a space structured by the chi-square distance. Now we want to
find the optimal s-dimensional subspace which is the closest to all the points.

In order to find the optimal subspace, we use an algorithm analogous to that
of Choi and Huh(1996). We write & = span(vy,...,vs), (1 < s < p), where §
is the s-dimensional subspace of £F which is spanned by the p x s basis vector
V = (vy, ..., v5) such that v;-Dc_lvk =0(j #k) and viD_ vy = 1.

Let d; in & be the nearest point to a; in £P. Hence we have the squared
distance of a; from &; with metric D! in S is given by

5
@2 = fla; - &l = DI (D, — 3 vevi)D; e
k=1

Note that we set d; = |[a; — &;||p_1 and consider the minimization of
Dy =3 fir pldi) = D fix plll2i — &illp-1), (2.2)
1 1

with the constraint viD vy = 0(j # k) and viD vy, = 1.

Here
(#) = ¢?[1 — cos(t/c)], for |t |< cm,
P = 2¢2, for | ¢ |> cm.

Of course, p(-) is Andrews’ type and also we can use other types of p(-) given in
Li (1985, p. 293). We hope that the minimization of (2.2) yields a robust version
of the eigensystem and ultimately, coordinates of the row profiles for a robust
simple correspondence analysis.

For our convenience, setting n; = D, 2y, in the constraint of (2.2), we
consider the minimization of (2.2) subject to nin, = 0 (j # k) and njn; = 1.
So by using the procedure analogous to the Lagrangian method in Choi and Huh
(1996, Appendix), we will obtain the ng, &k = 1,...,s. See the Appendix for the
details.

Consequently, we have an eigensystem

(D,Y2AD, /2) Dy (D, 2AD, )0y = Mgemy, k=1, .., s. (2.3)
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Here the n;, k = 1,..., s, are the eigenvectors corresponding to eigenvalues
Mk = A, k= 1,..,8, of (D,Y2AD,Y/?)D(D,/?AD, /%) where D,, =
diag(wy, ..., wn) with

wi = Y(|la; — &llpz1)/lla: - Aillpz2, i =1,..,m, (2.4)

and () is the derivative of p(-). In general, in correspondence analysis, the
eigenvalues are called inertias. We call the (2.3) a robust eigensystem.

From the the eigenvectors n; = Dc_l/gv;€7 k =1,.., s, satisfying the robust
eigensystem (2.3), we obtain vy = D ?ny, k = 1,...,s. Moreover, the new v
can define the k¥ robust principal axis of the s-dimensional subspace of £2. The
algorithm for a robust version of simple correspondence analysis can be described
as follows.

STEP 1: Take as a tentative vector vi the k' eigenvector from the eigensystem
of
(DTI/QA DC_I/.Z)I(Drl/zADC_l/Z).

STEP 2: Calculate Dy = diag(wi, ..., wn) with w; specified by (2.4)

STEP 3: Determine the eigenvalues and eigenvectors from the robust eigensystem

of

(DTI/ZADC—I/Z)IDW(DTI/QADC—I/Q)
using the wy, i = 1,...,n, from Step 2. We call these robust eigenvalues and
etgenvectors.

STEP 4: Repeat Steps 2 to 8 until on each successive procedure, the absolute dif-
ference between the tentative and updated eigenvector becomes not greater
than some sufficiently small €.

In practice, in deriving (2.3), the scale parameter o(a measure of spread) must
be taken into consideration. In each iterative step of the algorithm for robust
simple correspondence analysis, consider the median scale estimator & given by

& = (med;(||la; ~ &]lp-1)/0.6745). (2.5)

Then we obtain the robust eigensystem with D, = diag(wy, ..., w,) where w;,
i =1,...,n, are specified by (2.4).
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And the n x 1 robust coordinates vector x; is given by
Xp — ADC_I/an = D;lFDc_lvk.

Therefore taking the first s columns xj, ..., X of coordinate matrix X and denot-
ing X,y for this, X,y defines the projection of the row profiles onto the optimal
s-dimensional subspace.

Since the Dy norm of (D,~1/2ADC_1/2)n}C is equal to Ag, i.e.,

_ 2 _ _
||(Drl/2ADc 1/2)nk||Dw — n;c(Drl/EADC 1/2)’Dw(Dr1/2ADc 1/2)111.: = }\i,

the normalized coordinate vector myg such that m;Dwmk =0 (j # k) and
HmkllDw = ljak = 17'":37 is given by
m; = (D/?AD.)ny/ (D, 2AD. 2 )nylp,,
= (1/2)D, V2FD,"/?n,, (2.6)

Therefore we obtain an optimal s-dimensional map of a robust simple correspon-
dence analysis by using the robust coordinates of rows and columns.

3. ROBUST SINGULAR VALUE DECOMPOSITION FOR A
ROBUST CORRESPONDENCE ANALYSIS

From (2.5), if p is the rank of D, /2FD,~ /2, we have the relationship be-
tween the unitary vectors my and ny is given by

D, 2FD, 20, = \emy, k=1,....p.

Postmultiplying both sides by nj and summing over k, we have

P P
-1/2 -1/2 ! '
D, Y?FD,Y E nknk:§ A1y,
k=1 k=1

which leads to
P
D, 2FD. /% =} \ymyn),. = MD,N/, (3.1)
k=1

where M is the n X p matrix whose columns are the n x 1 left singular vec-
tors my, of (D, Y2FD, 1/2)Dy (D, Y?FD, */?) such that M'DyM = I,
N is a p x p matrix whose columns are the p x 1 right singular vectors nj of
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(D, Y2FD,"/2) Dy (D, *?F D,~'/?) such that N'N = NN’ = L, and Dy
is a p x p diagonal matrix where k** positive diagonal element A called robust
singular value of D, 2FD, /2.

Let us premultiply and postmultiply the singular value decomposition (3.1)
by D,'/2? and by D,!/? respectively. So the generalized robust singular value
decomposition is given by

F = D,'?MD,N'D,'/? = UD, V".

where U = D,'/?M and V = D,"2N have columns which are orthogonalized
with respect to metric D! and D! such that U'D,D; U =1,, VD!V =
VD!V’ =1, respectively and Dy = diag(A1, ..., Ap) in which A\? are the eigen-
values of (D, ~Y/2FD,.~!/2)'D,, (D, /2FD,~/?). So we know that the principal
axes as well as the coordinates of the row profiles with respect to these axes can
be easily obtained from a robust generalized singular value decomposition of F
and ultimately from a robust singular value decomposition of D, ~/?FD,~!/2,

Finally, we need a measure for goodness of a robust simple correspondence
analysis. For this, only using D,:_l/QFDc"l/2 and (Dr_l/QFDC_l/Z)(S) instead
of X* and i(s) in Choi and Huh(1996, Appendix), a goodness of robust approx-
imation in robust simple correspondence analysis can be given by

5 P
ps=1—||P =Py sz/ll P, =DM/ 3 A
k=1 k=1
where p is the rank of P = D,~Y2FD,~1/2.

4. NUMERICAL ILLUSTRATIONS

The data are from Greenacre (1993, p. 75) and consist of ten rows(scientific
discipline) and five columns(funding category). The columns are labeled in order
from highest to lowest categories of funding. They are A(most supported),...,
D(least supported) and E(no funding yet). The 796 scientific researchers are
cross-classified according to row and column markers of data.

In simple correspondence analysis, Fig.4.1 shows an optimal two-dimensional
map and the principal inertias and their percentages of total inertia are 0.039
(47.20%), 0.030 (36.66%), 0.011 (13.11%) and 0.003 (3.03%). Thus the first two
principal axes of Fig. 4.1 account for almost 83.86% . The interpretation of this
map is detailed in Greenacre (1993, pp. 74-93). In particular, Greenacre pointed
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out that among the rows the points Geology, Biochemistry and Engineering have
been the most influential in finding the principal plane formed from the first two
princiapl axes. And the row Mathematics is poorly displayed, with over two-
thirds of its inertia lying off the plane. Having observed this result, we should
be more careful when interpreting the position of Mathematics in the map. In
terms of its position it looks quite similar to the profile of Statistics, but this
projected position is not an accurate reflection of its true position.

=
od

tus 2 041308{36 657}
05 10 i5

Ili]

-0

Aus 1 00391(47 20%)

Figure 4.1; Optimal 2-dimensional map by simple correspondence analysis

So to resolve this problem, now consider the robust simple correspondence
analysis with () function which is the derivative of Andrews’ p(-) described in
Section 2. For this, we use ¢ = 1/7 and 0.194 as the median scale estimator of
(2.5) respectively. The final weights and in computing robust eigensystem (2.3)
are in the diagonal matrix,

D, = diag(0.000, 0.000, 0.966, 0.944, 1.000, 0.000,
0.421, 0.421, 0.981, 0.131).

In D, we note the first, second and sixth diagonal elements have 0.000,
0.000 and 0.000 respectively. As pointed out by Greenacre previously, they are
Geology, Biochemistry and Engineering respectively.

Now by reducing their influence, we give the robust two-dimensional map
Fig. 4.2 with the goodness of a robust approxiamtion 99.15%. Moreover, to
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match Fig. 4.1, the new rotated two axes in Fig. 4.2 are determined from
the counterclockwise rotation with an angle 90°. From Fig. 4.2, we note that
Statistics and Mathematics have the same direction as Axis 1 and Axis 2. Also
Mathematics does have less type A researchers than Statistics and more type
Cs than is apparent from the Fig. 4.1. So this robust version improved the two
problems which were pointed out by Greenacre.

&
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Axig 2.0 031(5 46%)

Figure 4.2: Optimal 2-dimensional map by robust correspondence analysis

5. CONCLUDING REMARKS

Here we have developed a robust simple correspondence analysis and a robust
singular value decomposition for this. In the numerical illustration described in
Section 4, our method produces a more reliable map by reducing the influence
of several peculiar rows. Thus we could resolve the problems pointed out by
Greenacre (1993, pp. 74-93). Of course, because there exit duality between
row analysis and column analysis, we can also discuss the influence of columns.
Finally, future valuable research will be provided by the application of the robust
approach discussed in simple correspondence analysis to multiple correspondence
analysis. This is possible because multiple correspondence is an extension of
simple correspondence analysis.
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APPENDIX: Details of the minimization problem in Section 2.

Consider the minimization of D; = 377 fiio(d,) = 220 firp(llas — &illp-1),
with the constraint V}Dc_lv;c =0(j #£k) and viD vy = L.
Since
dlla; — ﬁi||2Dc_1/8vk = —2Dc_1ai(a§Dc_lvk), k=1,...,8,
we have
Blla; — Aillp-1 /v = (Bllai — &illh-1/0v)/ (2]l — &illp-2),

= —Dc_laz-(agDc_lvk)/Hai — Eilch_l.

We set w; = ’l,[)(”i':\z _ﬁiHD;l)/llai —§i||DC_1, 1 = 1,...,7‘1,, in which ’lﬂ() is the
derivative of p(-) with respect to vi. So by using the analogous procedure to the
Lagrangian method of Choi and Huh (1996, Appendix), we have

> wifis Dy tay(aiDg vi) = A Dy v,
;
which leads to
DY A'DWD,A)D vy = A Do Mvg, k=1, ..., 5,
where Dy = diag(wi, ..., wy ). Premultiplying this equation by D.'/?, we have
(D, V2A' DD, AD, VD, Y ?v) = A D" 2vp, k=1, 5.
Setting ny = D,~*/2vy, we have the resistant eigensystem as
(D,2AD. 3Dy (D,?AD. )0y, = Mgy, k=1,....5,

where njn; = vi,D_ v, = 1.
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