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Sequential Confidence Intervals for Quantiles
Based on Recursive Density Estimators

Sung Kyun Kim and Sung Lai Kim!

ABSTRACT

A sequential procedure of fixed-width confidence intervals for quantiles
satisfying a condition of coverage probability is provided based on recur-
sive density estimators. It is shown that the proposed sequential procedure
is asymptotically efficient. In addition, the asymptotic normality for the
proposed stopping time is dexived.

Keywords: Sequential confidence intervals; Stopping time; Recursive density es-
timator; Asymptotic normality

1. INTRODUCTION

Let {X,:n=1, 2, ---} be a sequence of independent and identically dis-
tributed (i.i.d.) random variables with a common distribution function F and
let &, 0 < p < 1, be the p-th quantile. It is well-known that the order statistic

Xn,inpl+1: 0 < p < 1, is asymptotically normally distributed:

np)

Vi (Xnfngier = &)~ N (0, p(1 =)/ (&) (1.1)

under some conditions about the derivative f of F. [z] means the largest integer
not exceeding z.
Consider the problem of fixed-width confidence intervals for £, of the form

In(d) = [Xn,[np]+1 - d, Xn,[np]+1 + d] , d>0,
satisfying the coverage probability condition:
Ppel(d)>1~2a, 0<a<l/2 (1.2)

Since f(&p) is unknown in (1.1) we have to construct a sequential procedure in
the problem above.
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For the problem of interval estimation for quantiles, Serfling (1980) described
various methods of determining a confidence interval for a quantile in Section
2.6. Geertsema (1970) introduced a method for constructing bounded length
confidence intervals and Gijbels and Veraverbeke (1989) proposed a sequential
procedure for quantiles in the presence of censoring by the method of Geertsema
(1970).

In this paper we provide sequential fixed-width confidence intervals for quan-
tiles using recursive density estimators developed in density estimation. In Sec-
tion 2 we first investigate some asymptotic properties of an estimator of f(£,). In
Section 3 we propose a stopping time /N based on recursive density estimators,
and prove that the sequential confidence interval Iy(d) using the stopping time
N satisfies the asymptotic coverage condition (1.2) as d — 0 and that the pro-
posed sequential procedure is asymptotically efficient. Theorem 3.3 shows that
the sequential procedure proposed here has the same asymptotic efficiency in the
sense of average sample size as the comparable sequential procedures such as the
procedure based on the sign test of Geertsema (1970) when f is symmetric about
0 and p = 1/2, and the sequential procedure of Gijbels and Veraverbeke (1989) in
the i.i.d. case. In particular, the asymptotic normality for the proposed stopping
time N is derived.

2. CONVERGENCE OF RECURSIVE DENSITY
ESTIMATORS

Now we introduce the recursive density estimator
n
F - -1
Fu(z) =071 D 2(205) " Iix, ~a)<h, )
j=1

Recursive density estimators with a kernel function have been studied by several
authors (Caroll (1976), Basu and Sahoo (1989), and so on) because of the ad-
vantage that f,, (z) can be computed from fa—1(z), b, and the observation X,.
But the estimator f, (Xn,[np]_,_l) of f(¢p) does not have such advantage since

X, [np]
derive the asymptotic normality of the stopping time to be defined later.

41 18 not fixed. Nevertheless, in this paper, the estimator will be used to

Throughout this paper, the following conditions about f and b, are assumed:

(A1) f is differentiable on R and f(£,) > 0.

(A2) supgecp f'(z) < B < +00.
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(A3) b,=n"% 1/3<a<1/2.

In (A3), the sequence {b,} doesn’t need to be of such special form. We
can obtain the results of this section under a necessary condition of (A3) as
follows: (1) b, — 0, (2) nbf — oo for some k (2 < k < 3), (3) nb3 = O(1),
(4) n7t %=1bn/bj — v for some constant v > 0 and (5) b/ 2172 2i=1b; = 0.
However, (A3) is enforced to give further information (Theorems 3.3 and 3.6) on
the stopping time to be proposed in Section 3. The next lemma is easily checked

by (A3).

Lemma 2.1. Under assumption (A3), as n — oo, (1) n™' 37 1 bn/b; — (1 +

a)7t, (2) nTt 0y (ba/bj)® = (14 20)7 and (3) b/ *n"12 0 by — 0,

The following lemma is proved along the lines of the proof of Bahadur’s
lemma (Serfling (1980, p97)). The notation u(n) ~ v(n), n — oo, stands for
limp 00 u(n)/v(n) = 1.

Lemma 2.2. Let {a,} be a sequence of positive real numbers such that a, ~
con =2 (log n)l/z, n —+ o0, for some constants cg > 0 and put

1)

Gt (8) =071 (205) M (x, <48, G (8) =071y (205) M x, <o)
=1 =1

and

ﬁpn = sup [Gn (§p+2) — Gn (&) — {EGn (& + ) — EGn (&)},

[z|<an

where gy, is either oo or G,_. Then w.p.1
- 3/4
Hy, =0 (b;l (n_llogn) / ) , = oo.

Proof: We will prove the result only in the case of §,-, because the other
case is proved by the similar method. Put §, = §,+. Note that g, (¢) is a
nondecreasing function of ¢t and Egn (t) = (nbn) ™t 372, bn(2b;)71F (£ 4 b;). Let
{d.} be a sequence of positive integers such that d, ~ conl/4 (logn)/?, n — .
For integers r = —d,, ---, dn, put

Men = &p + andn'r,  Grn = EGn (et10) — Bdn ()

and .
Gr,n = |§n (77r,n) — G (fp) - {Eﬁn (777',17.) - Eg, (fp)}| -
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Using the monotonicity of g, (z) and Eg, (), for 7, < &+ 2 < Mg, 7 =
—dp, -, dn — 1, we have
|Gr (ép + @) = Gn (§p) — {EGn (&§p + 2) — EGn (§p) }

< max [Gn (i) — Gn (&) = {EGn (1in) = EGn (§p)H + Grn.

Therefore Hpn < Kn+§n, where K, = max{@,ﬂ,n Dr| < dn} and ﬁn = max{&p :
|r| < dp}. By (Al), there exists M > 0 such that

sup [ +z) < M. (2.1)

|z| £<max an +max by

Since Nrt1n — Mrn = (:Lnd,;1 = n_3/4, —dn, < r < d, —1, we have by the mean
value theorem that

T n
Grn = (ba) 1Y bn fermg) ™34 < (M/2)b n =3 (n“l an/bj> ,
j=1 j=1

where 7, nb; < ¢ppnj < Pri1ab; for 1 < 7 < n. By Lemma 2.1, we have En =
0 (bgln—3/4), n — 0.

We now establish that wp.1l K, = O (b_l( ~Llog n)3/4). It suffices by
Borel-Cantelli’s lemma to show that > oo, P (Kn > a:n) converges, where z, =
et (n~tlogn) 3/% for a constant ¢, > 0 to be specified later. Note that

dn
r=—dn

and that nG, , is distributed as ‘E?=1(2bj)_1 (Y; — EY;) ‘, in which the Y}’s are in-
dependent binomial (1, 2,5 ;) together with 2., ; = [F (9 + b;) — F (§p + bj)].
By Bernstein’s inequality (Serfling (1980, p95, Lemma A)), we have

P (nbnér,n > nbn.’rn) < 270,

where 6, , = n2b?2 2/{ o (bn/bj)2 Zrn,j + nbnwn} . But there exists N*! such
that foralln > N*1, 2., i < f (Gonj) [Mrn — Epl < May, where G55 (1 < j < n)
are some suitable numbers between 7, + b; and &, + b;. It then follows that for
|r| <dpand n > N*

O > nbﬁmi/{Man Z (b /b;) +bnzn}

nb2el/ {May, + bna:n} = §,, say.

\'

Y
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Note that 6, > ¢ (2¢0M) ! log n for n sufficiently large. Given ¢y and M, we may
choose ¢; large enough that ¢? (2c0M)_1 > 2. It implies that P (@rn > n:n) <
2, |r| < dy, for n sufficiently large. Thus, noting that n™/4 (logn)*? —= 0 as
n —» 0o, we can see that there exists N*2(> N*1) such that for all n > N*2
—— dn Ce]
P (Kn > mn) <3P (Gm > :cn) < 4dan2 < con32.

r=—dn

Hence 20, P (En > wn)converges and wp.l K, = O (bgl (n"1log n)3/4) as
n — 00. O

Lemma 2.3. It holds that w.p.1
Fo (Xnfupisr) = Fa () = O (n®=3/% (10g n)*'*)
Proof: First, note under assumption (Al) that w.p.1

|X [np}+ EpI < (2/F(&) ( "1logn)1/2, (2.2)

for all n sufficiently large. From Lemma 2.2 and (2.2), we have w.p.1

ﬁz( [np+1) fn(fp) = {fn( np+1) fn (gp)}
= 0 (n*®*(logn)*/*) + T,

;!

where

n

To = 2702 (20) " {F (Xupugar +05) ~ F (6 + bj) }
j=1
< 1
—n_l Z (26_7')_ {F (Xn,[np]-H - bj) - F (fp - b])} .

=1

Let ¥V, = X, — &p. Using Young’s formula of Taylor’s theorem for F' at

Ep £ bj, we get
F (Xnmpiis £b5) = F (€ £b5) = f (& £ b)) Yo+ 0 (¥2).
Furthermore, there are ¢;’s (1 < j < n) for which

|f (§p +b5) — f (& — ;)| = |f' (&)] (2b;) < B(2b;)
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by (A2). Hence we have w.p.1

Tal < BYal + (n—l ibn/bj) o (b'73). (2:3)
j=1

From (2.2), the first term on the right hand of (2.3) is bounded by O((lﬁg—")lﬂ)
w.p.1 and from Lemma 2.1, the second term is bounded by o (b;'n~* logn) w.p.1.
Since b 'n"llogn < b7 (n llogn)®4 and (n~!logn)/? < n= G/ (logn)¥/* =
b7l (n"Ylogn)**, 1/3 < a < 1/2, the conclusion is valid. a

Theorem 2.1. (1) fo (Xnpnga1) = f (&), wp 1

(2) (2nb0)> {Fo (Xnjmpj1) = F (&)} / (vF (&))Y2 =5 N (0,1), where v =
(1+a)™t.
Proof: By Lemma 2.3, we have w.p.1

(2n02)"? { Fa (Xapngir) = Fa (&)} = O (A= 0/232 (log n)*/*) - 0. (2.4)

By the definition of f, (¢), Efn (&) = n™' X0y p;/ (2b;) and Varfn (&) =
n—? =1 (215)]-)_2 p; (1 —p;), where p; = F (§, + b;) — F (§, — b;). Using Taylor’s
theorem, we get

pj = £ (&) 26 + 27" [f'(¢j) — '(d))] ]
for some c; and d; with 0 < ¢; —&p < b; and 0 < £, — d;j < b;. Therefore from
assumption (A2) and Lemma 2.1

(2n62)"7? | BFa (&) — £ (69)] < BY*n M2y b — 0 (2.5)
j=1
and
2nb,Varfn, (&p) = f (&) (n—l Z bn/bj) + O (bn) = vf (&) (2.6)
j=1
Hence, from (2.4)-(2.6) and Kolmogorov’s strong law of large numbers, we can

prove easily the strong consistency of Fn (Xn,[np]+l) for the estimator of f (&).
To complete the proof of the theorem, it suffices by (2.4)-(2.6) to show that

{J?n (€p) — Eﬁz (gp)} /v Varfn (&) N (0, 1).
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By Berry-Esséen’s theorem (Serfling (1980, p33)), we have

P ({7 - Fh @)} WV arfulg) <o) — 20 < D,

where @ (t) is the standard normal distribution function and

n n —3/2
= Z (ij (Z 26] p] 1 - p]))
j=1 =1

for a universal constant C'. Note that

(n™'0a) D (2b5)7 —p;i) =~ (v/2)f (&)
=1
and
n n 2
iy St £ (n—az OIRCEE
ji=1 j=1 7

Hence we have D, = O ((nb )_1/2) =0 ( ‘(1‘”)/2) , 1/3 <a < 1/2.
Thus, by Slutsky’s theorem, fn( np]+1) is asymptotically normally dis-
tributed with centering f (£p) and scale (vf (&) / (.‘ann))l/z. O

3. SEQUENTIAL CONFIDENCE INTERVALS AND
ASYMPTOTIC PROPERTIES OF THE PROPOSED
STOPPING TIME

Let I,(d)= [Xﬂ,[nplﬂmd, Xo nph + d] , d > 0. By the asymptotic normality
of Xp, tnp)+1, we know that for large n

VA1 (&) VAdf (&)
ﬁ (X",[ﬂpl-l—l - fp) < ﬂ) ~1-—2a.

If f (&) were known, we get approximately

Vnd f (&) /4/p(1=p) = 24, (3.1)

where z, = &7 (1 — @), ® (2) is the standard normal distribution function. Since
f (£p) is unknown, we propose a stopping rule based on (3.1) with f (£,) replaced
by its estimator f, (Xn,[np]+1

P(EpEIn(d))=P(

N =N(d) =it {n>no:nfy (Xumir) 2p(1-p) A/}, (32)
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and the sequential confidence interval based on the stopping rule (3.2) is given
by
In(d) = [Xnnpper — 4y Xivgppa +4] -

We have the following lemmas and theorems for the above stopping rule NV
and the sequential confidence interval Iy (d).

Lemma 3.1. (1) N(d) < +o0 w.p.I for each d.
(2) N(d) = oo w.p.lasd—0.
(8) N (d) = p(1 ~p)z2/f? (&) w.p.lasd— 0.

Proof: Lemma 3.1 can be easily proved by lemmas of Chow and Robbins (1965).
O

Theorem 3.1. (Asymptotic consistency) For given a, 0 < a < 1/2,
cllli\l‘ljp(fp €In(d)=1-2a.

Proof: Since the normalized partial sum of i.i.d. random variables is u.c.i.p.

(Gut (1988, pl5), Woodroofe (1982, ppl0-11)), we can see that

Vi (Fa (&) —p) [y/p(L—p) =n 23 Y;
j=1

is u.c.i.p., where ¥; = (I{ngp} —p)/+/p(1 —p). By Anscombe’s theorem (Gut
(1988, Section 1.3), Woodroofe (1982, pll, Theorem 1.4)), we have

VN (Fy (&) = p) /[\/p(1 —p) =+ N (0, 1) asd— 0.

Bahadur’s representation (Serfling (1980, p91, p93)) and Lemma 3.1 yield that
VNF (&) (Xnnge1 — &) /\/p(L=p) 5 N (0, 1) asd —0,
which implies that P (§, € Iy (d)) =+ 1 -2 as d - 0. O

Theorem 3.2. (Asymptotic efficiency)

d*EN(d) = p(1—p)22/f*(&) asd—0.
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Proof: By Theorem 1.5 in Woodroofe (1983, pl3), it is sufficient to show that
G (y) = supycg, P (d°N (d) > y) is integrable with respect to Lebesgue mea-
sure over (0,00). Let Pn; = F( + bj — ¢n) — F(&p ~ bj + ¢,), where ¢, =
(2/f (&) (n"tlog n)l/2 . By the definition of N, we have for n sufliciently large

P(EN@>y) < P(F(Xuppir) < 2ayp 1= 0/ (VR), = [u/e?])
< (i( EY) < —nzy,, n= [y/dg}) =T, say,

where 17'] = b, (ij)_ I{1x; gy |<bj—ca} and

—z, = by {za\/p(l —p)/ (Vnd) —n~ Zn: (ij)_lﬁnj} |

[z] denotes the largest integer not exceeding x. Under assumptions (A1)-(A3),

- i (26;) ™ Pnj = f (&) {1 — (en/bn) (n_l i bn/bg) } +0 (nhl > bj) )
j=1 j=1 j=1

in which the right term converges to f (¢,), and

n

(nba) 1Y Var?; < 12&» b;) 72 Bn;

< § p) (n—lib—”) + 0 (by) = f({,,)_ (3.3)
2 b 2

Choose ag (ag > 1) such that z44/p(1—p)/vag—1 < f (&) /4 and for such
ao there is dg (do < 1) such that for all n > [aq/d%]

U (2b) By 2 F (&) /20 (nba)TPY Var¥ < £ (6,)
=1

j=1

It then follows that z, /b, > f (&) /4 for all n = [y/d?], y > ag, d < dy. Thus,
using Bernstein’s inequality, we get that for all n = [y/d?], y > ag, d < dg,

(fn( [np—l—l) <za\/p(1_ / \/~d , = [y/dz})

< P(i(? EY;) < —n(bnf(fp)/4),n=[y/d2])

r

|A
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where 6, = n20% 2 (&) / {16 (202, VarY; + nbaf (&) } - By (3.3),
On > (f (£p) /48)nbn, for alln=[y/d?], y > ao, d < do.
Consequently, we have for all n = [y/d2], y > ao, d < d,
P(dN(d)>y) < 2exp{-(f (&) /48)nba}

2 exp {— (f (&p) /48) da2(1—a) (y — d%)l—a} )

[P

in which the last term is independent of d < dp, and so G (y) is integrable over
[ag, o0) if a < 1. O

As mentioned in the proof of Theorem 3.1, the normalized partial sum of
i.i.d. random variables is u.c.i.p. However we need to show that the partial sum
of independent but not identically distributed random variables is u.c.i.p. as in
the following lemma.

Lemma 3.2. Let {X;} be independent random variables with E(X;) = ,u] and
Var(X;) = j (> 0) and put Sp, = Y7oy Xj and S, = (Sp — ESn) /1/X ] 107

Suppose that S}, converges in distribution and that
n+k
> 2/20 h(k/n) for alln, k> 1,
7=n+1
where h(z) is a nondecreasing function such that lim,_,oh(z) = 0. Then S},

n>1, 1 u.c.tp.

Proof: Without loss of generality, we may suppose that u; =0, 7 > 1. Then

—1/2
|Sn+k (ZU ) | Srtk — Sl
n+k —1/2
+ 1—( (Z 2/Zo>) 1S5 (34)

1=n+1

for alln, k> 1. Let ¢, § > 0 and k& < nd. For the first term on the right hand
of (3.4), Kolmogorov’s inequality yields

/2 n+[nd)
i 43 *nﬂ o3 4
P Faxls’”k =Sl 25 (Z ) Sa Tro? T S

Z h(8),
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which tends to 0 as § — 0. For the second term,

n+k —1/2
{ (Z 2/20)} > {1+h(@B)} Y2 =1~C(©6)

J=n+1

and |Sy|, n > 1, are stochastically bounded since its limiting distribution exists.
Hence it follows that

n+k ~1/2 E ¢
P 1_( (Z 2/20)) 531> 5 gp([s;;pm),

n-+1
which tends to 0 as ¢ - 0 uniformly in n > 1. Therefore §%, n > 1, isu.c.ip. O

Theorem 3.3. Let y=(1+a)”". Then asd — 0
Ziviay = NN { P (X g ) = (&) } / (vF (&)Y 55 N(0, 1.

Proof: We shall show that v/2nb, { fn( - Tl) f(gp)}, n > 1, is weip.
Then ZN(d) £, N(0, 1) as d — 0 by Anscombe’s theorem and Theorem 2.1. It

suffices by (2.4)-(2.6) to show that {f; (&) ~ Ef, (gp)} JA/Varfn (&), n>1, is
u.c.i.p., where 'n,chw"ﬁz (&p) = Z?Zl(ij)_zpj(l—pj) and p; = F(&p+b;)—F(&p—
b;). If Xn, n > m for some fixed m, is u.c.i.p., then so is X,,, n > 1. Therefore
we may suppose that VarY; > 0 for all j, where ¥; = (ij)ﬁl(-r{lxj—gﬂgbj} —pj).
Since p;(1 — p;j)/(2b;) = f(&p), § — oo, there exist ¢y, ¢; such that 0 < ¢ <
p;(1 —pj)/(2b;) < ¢ for all j. Hence we get that for all n, k,

n+k n+k
(Z VarY/ZVarY) (Z by I/Zb ) by =3¢
=n+1 =n+1

in which the right term is bounded by (4¢;/cq) {(1 + (k/n))* — 1} through a sim-

ple calculation. Therefore {f; (&) — Efn (fp)} /A Varfa( (&p), m > 1, is u.c.ip.
by Lemma 3.2. O

Theorem 3.4. (Asymptotic normality of N) Let v = (14+a)~! and Ny = Ny (d)
= p(1—p) 2/ (@F2(&,)). Then asd -0

Zna) = (27F (&) 72 (No(d)) ™ {N (d) — No(d)} =+ N(0, 1).
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Proof: For convenience’s sake, put fN = fN (X N,[Np]+1) . Let
1— p)z2
P (d)=P (Ii(dfz—f’) 1< (@& N e+ No)
N-1

and

Py(d)=P (1% < [297 (&) NPVt + No) .
N

Then by the definition of N, P, (d) < P (ZN(d) < t) < Py(d). Py(d) can be
rewritten by

B ( [Ng No /(&) {Fv + 1 (&)} VANON {F — £ (&)} _ t)
by N - |

2]?12\7 vf (fp)

Observe that as d = 0
n p.1
byNg 241, by/bvoi -1, fn (XN,[Np]+1) P F (e (3.5)

By Slutsky’s theorem with Theorem 3.3 and (3.5), we have Py (d) — & (t) as d —
0, so that limsupy_,q P (ZN(d) < t) < ®(t), where ®(t) is the standard normal
distribution function. Similarly, using the facts that

\/ by N No @) P17 (&)} wps

— 1
bN—~1 bN N -1 2]?12\7_1
and N
V2N =1 by_1{fn-1—F (&)
{ 2l £y N(O, 1),
vf (fp)
we get P (d) — @ (¢) as d — 0, so that liminfy ,q P ( Zy(g) < t) = @ (t). There-
(a)
fore Zy(gy =+ N (0, 1) as d — 0. O
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