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Block Bootstrapped Empirical Process for Dependent
Sequences

Tae Yoon Kim!

ABSTRACT

Conditinal weakly convergence of the blockwise bootstrapped empiri-
cal process for stationary sequences to the appropriate Gaussian process is
reestablished particularly for severely dependent a-mixing sequences. Issue
of block size is discussed from the point of validity of bootstrap method.

Keywords: Bootstrap; Empirical process; Stationary and strong mixing sequences;
Weak convergence.

1. INTRODUCTION

It is well-established that Efron’s bootstrap provides a very useful nonpara-
metric technique to investigate the sampling distribution of complicated statis-
tics. However, the assumption of independence of the observations is crucial. It
is easily seen that bootstrap gives incorrect answers if dependence presents; see
Kiinsch (1989). Recently an extension of Efron’s bootstrap to general stationary
dependent sequences of observations has been made by Kiinsch (1989), namely
Moving Blocks Bootstrap (MBB). Instead of selecting single observation X; from
the sample {X7,... ,X,} with replacement, his extended method involves select-
ing k blocks of consecutive observations of length b. Here b is a function of n,
tending to infinity with b = o(n) and n ~ kb. Kiinsch (1989) showed that under
some regular conditions the blockwise bootstrap correctly estimates the sampling
distribution as well as the asymptotic variance of the sample mean, when = is
sufficiently large.

Several recent papers have shown that the validity of the blockwise bootstrap
for empirical processes under the assumption of weak dependence. For example,
see Shao and Yu (1996), Radulovié¢ (1996a, 1996b, 1998), Biihlman (1994), and
Naik-Nimbalkar and Rajarshi (1994). For long range dependence, Lahiri (1993)
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showed that the MBB procedure fails to provide a valid approximation to the
distribution of normalized sample mean. In this paper we reestablish the boot-
strap CLT for empirical processes with a-mixing coefficients o, = n™" satisfying
1 < v < 2. Qur result addresses the issue of block size the choice of which may
be critical to excute the M BB. Throughout this paper we will mainly follow the
approach and setting taken by Radulovi¢ (1996b, 1998).

2. PRELIMINARIES AND RESULTS

For dependence structure, o-mixing will be employed. Let A and B be two
o-fields. Then

a(A,B)= sup |P(ANB)-P(A)P(B)|
(A,B)eAzB
Let {X;} be a strictly stationary strong-mixing sequence with mixing coeffi-
cients o, where n denotes the time lag difference between two o-fields. Now
the blockwise bootstrap procedure is summerized: Given the sample Xy,... , X,
and b € N, set X,y; = X; for i € {1,...,b}. Then the MBB sample with block
size b is defined as follows: if I1,... ,Ix,k = [n/b], are sampled with replacement
from {1,...,n} (ie., iid uniform on {1,...,n}), then the MBB sample consists
of all the data points X; that belong to the sampled blocks By, ..., By, », ie.,
Xf S XIU--- ,X; = X[1+b_1,X;+1 = XIm"‘ ,Xl* = XIk—l—b—l where [ = kb.
Without loss of generality we may assume ! = n. From now on P*, E*, and Var*
are P, E, and Var given the sample.
For a given stationary sequence of real valued r.v.’s {X;}2,, and class of
functions F = {fi(z) = lz<¢(x) : £ € R}, define the empirical process indexed by
the class F as

Zn(f) ser = vn(Py — P)(

E ). (2.1)

as

mﬁl

The bootstrap version of this process is define
Zy(f,w) fer = ViPa(w) = Pu(w))(f) = % D (f(XH W) = Palfyw)), (2:2)
i=1

where {X}}%, is obtained by the MBB procedure with block size b(n) and
B,(w)=n = zzzl dx3(w)- Obviously the bootstrap process (2.2) is defined given
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the sample (given w). It is well known that the above defined bootstrap is suf-
ficient for most of the applications since it allows us to construct asymptotic
confidence regions for P,

To establish validity of M BB, we follow the classical approach taken by many
authors (see Biithlman (1994), Radulovié (1996b, 1998)). It is clear that Z,(f)
can be viewed as a random element in [*(F), and therefore we can have

Zu(f)er 3 Gp(f)ser in 1°(F) (2.3)

in the sense of Hoffman-Jorgenson (1984). The Gaussian process Gp(f)ser from
(2.3) is determined by

Cov(Gp(f), Gp(9)) = lim Cov(Z.(f), Zn(g))- (2.4)

if the above limit exists. Analogously we may have weak convergence in [*°(F)
of the bootstrap version of the process

Zo(frw)per £ G(f)ser in probability or a.s. (2.5)

for the centered Gaussian process (G, independent of w. Then it is said that the
bootstrap works if the limiting process G(f) coincides with Gp(f) and as a result
validity of M BB is established. In fact our Theorem 2.1 below states validity of
M BB under some conditions. '

In this paper we consider only the bootstrap in probability as defined in Gine
and Zinn (1990). Namely we say that (2.5) holds in probability if

dprL[L(Zy () X1, .., Xn), L(G(f))] = 0 in outer probability. (2.6)

where £(Z) denotes the law of Z, dgr, (1, v) = sup{| [ fdu— [ Ffdv|:| f ||BL< 1},
and || - ||z stands for the bounded Lipschitz norm. Throughout this paper we
assume that the quantity of (2.6) is measurable. For the measurability issue, refer
Radulovié¢ (1996b).

Theorem 2.1. Let {X;};2, be a strictly stationary a-mizing sequence of real
random variables. Suppose also that an = O(n™Y) for some 1 < v < 2 and that

{X?} is generated by the MBB procedure with block size b, = O(n*) for some
0<p<1/[3(3—v)]. Then
Za(f)fer = Gp(f)ger in probability, (2.7)

where Gp(f) is a centered Gaussian process defined by the covariance structure
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Radulovié (1998) established validity under v > land b, = n# for 0 < p <
min(1/3,v/4 — 1/6). Theorem 2.1 takes up his result further for 1 < v < 2 and
provide a better one. For example, when v is close to 1, we need p < 1/6 while
his result requires y < 1/12. Thus our result certainly gives more room for choice
of block size when 1 < v < 2. This may be meaningful because it would be safer
to have a wider range for b when the optimal block size is unknown (the optimal
block size is known to be ¢n'/3 only for 2 < v, see remark 3.3 of Kiinsch (1989)).
Qur result seems to suggest that a narrower block size for M BB would be
necessary for handling severe dependence. However such explication is misleading
in the sense that a longer block would be expected to handle severe dependence.
Thus what our Theorem 2.1 really tells is that the introduction of block is not
efficacious in handling severe dependence. Behind this is weakness of M BB.
Indeed joining independent bootstrapped block to form the bootstrapped statistic
tends to completely destroy the strong dependence of underlying observations.

3. PROOF OF THEOREM

Proof of Theorem will basically follow from the steps taken by Radulovié
(1998). Indeed Lemmas 3.3 and 3.4 below are the Lemmas 2 and 3 of Radulovié
(1998) and Lemmas 3.1 and 3.2 are established to provide Lemmas 3.3 and 3.4.
Thus necessary modifications and a sketch of proof will be given here while the
detailed proof will be left out whenever possible. Note that we establish the
second moment bounds in Lemma 3.2 and (3.11) by exerting different technique
than Radulovié¢ (1998), which are key tools for verifications of Lemmas 3.3 and
3.4 here.

To establish Lemmas we introduce Davydov’s covariance inequality

|Cov(X,Y)] < Const.a(X,Y) || X lpll Y llgs (3.1)

where r, p, ¢ are positive real numbers such that r + 1/p + 1/¢ = 1. As a
consequence of this inequality Yokoyama (1980) has proved the following.

Lemma 3.1. Let {X;} be a strictly stationary strong mizing sequence with EX; =
0 and || X; leo< C < c0. Suppose also that 352, (i + 1)/?~ 1oy < co. Then there
ezists a constant K such that

T

Y Xi| < En'l2 (3.2)

=1

E
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Lemma 8.2. Let {ZI'i € {l,... ,n},n € N} be a triangular array of centered
7.0.’s such that for every fized n the row {Z7,i=1,... ,n} is strictly stationary.
Let us also assume that a(Z7, ZT') = agy(i—b,) where {a;};>0 is some decreasing
sequence of positive real numbers and {by}n>o is some unbounded nondecreasing
sequence of integers < n. Finally if sup; pen E|Z1° < 0 for some s < 2, then

Sz

i=1

2 n
< Constn{b || Z 1%° + || Z 1% ) ai}-

1=bh

E

Proof of Lemma 3.2. In the following computation the constant C might change
from line to line. In order to ease notation we will occasionally write Z; and b
instead of Z* and b,,. It is easy to see that by the stationarity

n 20—1 n
B\ zZif <Cn)_ E(ZoZ:)+Cn | B(Z07Z:).
i=1 =0 1=2b

Then the first term can be easily estimated by Holder’s inequality. Indeed it is

bounded by
2b—1

> B(%7;) <bE(Z)* < Cb| Z |57 .
i=0
In order to estimate the second term we observe that by Davydov’s inequality
(3.1) with p = 0o, ¢ = o, and » = 1 and Hélder’s inequality
T n n
D E(ZZ)<CIZ1% Y eaSCNZ 1% Y o

1=2b 1=2b 1=b

Combining these results, we have proved Lemma 3.2.

Lemma 3.3. Let {X;}2, be a strictly stationary sequence of real r.v.’s such
that X; is uniformly distributed on [0,1] and let an, by, 4 and v be the same as
in Theorem 2.1. Let p(n) = (Inn)* and H, be some sequence of subsets of [0, 1]
such that Card(Hy,) < Cn?/. Finally, if we let {X}}%., be generated by the MBB
procedure with block size by, then

bn

ptm) sup | (2 (aexizo = Palort) )

(51t)€HTb i=1

2
- E( S5 (Lpexicy — (E~ s)))) ‘ — 0 in probability.
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Proof: (Proof of Lemma 8.8.) Let A} = 6=Y/2%""_ | 1, xr<) and Ay :=
p-1/2 Z?:1 1(s<x;<t)- Then the above expression is bounded by

p(n) sup
(s;t)€Hn

B (45— V(i - s))2 ~ B (4~ V(i - s))2‘ (3.3)

+p(n)b sup |Pa(s,t) ~ (t - s)[*
(S,t)EHn,

+2p(n)Vb sup |Py(s,t) — (¢ - s)|
(S,t)EHn

According to Radulovié (1998), Lemma, 3.3 will follow if one shows that I, and
II,, converges to 0 in probability. Verification of I11, follows from verification of
II,. For every e >0

B* (45 - Vbt - 5)) ’ = I, + LI, + ITI,.

2

P(II, > ¢) < Const.Card(Hyg)p(n)b sup E
(s,t)€Hy

1 n
o Z 1(s<X,-gt) —(t—s)

=1

n2/3p 2

< C(lnn)*

sup E
n*  (s,;t)eH,

Z Yoaxicty — (E—8)

g==1

If v > 1, then by Lemma 3.1 the above is bounded by

b
< C(lnn)* B Clnn)in#1/3,
By the choice of b,, the above expression converges to 0 as n tends to in-
finity. Now it remains to show that I, converges to 0 in probability. Let

Y= (072 Y5 (1sex; <) — (t — 5)))% Then for every € > 0

> e) . (3.4)

Without loss of generality we can assume stationarity of {Y;*}i~,;. Now (3.4)
does not exceed
E)

-1 Z Y’n EY”

(3 t)eHn i=1

P(In>e)=P( sup p(n)|n

n

1 T n
= (¥ - EBY?)| >

i=1

C Card(H,) sup P(p(n)
(s,t)eH,

n 2

LS - By

§Cn2/3p('n,)2 sup FE
n i=1

(s,t)eH,
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Letting Z7 := Y;® — EY;” and observing that by Lemma 3.1 and the assumptions
of Lemma 3.3, sup; ,ex E|Z]'|* < oo holds for any 1 < s < v, we can apply
Lemma 3.2 and bound expression (3.5) with

b 1 “
8, _2/3 7 25 A 2 § X

i=b

< C(lnn)®n~t? (b“ +b° Zai)

i=b
by definition of Z['. If 1 < v < 2 the above expression is bounded by

C(lnn)én~%3 (B3° +6777),

which tends to zero as n tends to co by the choice of b,. This proves Lemma 3.3.
O

Before stating the next Lemma several definitions are necessary. Let F be
a class of functions and d be a pseudo metric on F. Then for every e > 0, the
covering number N (e, F,d) is defined by

N(e, F,d) = min{m : there are fi,...,fn € F such that sup min d(f, f;) < e}
feF1<i<m

The collection F = {f1,..- , fm} is called an e-net in F. Finally we set

b b
of = Var(b™/2 3" f(Xy)) and &3 = Var" (b2 Y f(X7)).
i=1

i=1
Now we have the following Lemma which is Lemma 3 of Radulovié (1998).

Lemma 3.4. Let {X;}iso, {X]}y, b and an be the same as in Lemma 3.3.
Let F = {fi(z) = locz<t,t € [0,1]}, and Fp be an n~3-net in F under the
pseudo distance d(fy, fs) = |t — s| such that Card(F,) < const.n/3. Finally, let
Fl={f—-9.f,9 € Fn}. Then

An = (Inn)* sup |62(h) — o2(h)| = 0 in probability (3.7)
heF},
B, = (lan)? sup &2(f — g) — Q in probability. (3.8)

[g€Fd(f.g9)<n=1/3
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Proof of Lemma 3.4. For (3.7), observe that Card.F), < Const.n?*®. Then by
an application of Lemma 3.3 and by the definition of 67(h) and o7 (k) we have
A, —» 0 in probability.

In order to show the second part of Lemma 3.4, following the argument of
proof of Lemma 3 of Radulovié¢ (1998), it is sufficient to consider the following

0,1),|s—t|<n~1/3 i=1

P( sup (1nn)2|n—12n:[ff<s,t)—Eff(s,t)n>e). (3.9)
s<te]

Furthurmore note that we are able to replace Py,(s,t) with (¢ — s) in the above
expression, since

sup b(lnn)?| P, (s,t) — (t — s)| — 0 in probability . (3.10)
s<te[0,1],|s—t|<n—1/3

Indeed (3.10) follows if one shows that

T T P

p
max b(lnn):Zan( ) - (n1/3 - 71.1/3)' = I‘I'H

0<p<r<nl/3 [p—r|<2 nt/3’ pl/3

converges to 0 in probability. For every € > 0

P(I, > ¢) < C(lnn)*n'3p? sup E(n~! i[lsdﬁgt - (t - s)])?
s,t€f0,1] i—1
(by Lemma 3.1 with r =2) if v > 1
< C(lnn)*nt/3p?n L.
Then the above expression is dominated by

C(lnn)in=2/3p2,

which converges to zero by the choice of b,.
Therefore we can proceed with estimating (3.8) using f? (s, t) instead of (s, t).
Then (3.8) will be dominated by

(Inn)?n~! Z[fib(pn_lm, rn~ %) — Eff(pn~1/?, rn 2]
i=1

max
0<p<r<nt/? |Jp—r|<2nt/6

n i+b

+(Inn)? max -1 1 - ) —1s —n~ Y2
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2
i+b
! —~1/2
+(nn)? O<p<r<\/_a|17'—rl<2n1/6 Z [( Z(l(pHI)nlfstJsm‘”z)

Jj=i
i+b 2
-1/2
— b / Z(lpn—l/ZSXjS(r_l)n—l/z +o(1)
=i

= II, + III, + IV, + o(1).

For every e > 0
P(III, > €) < Const.(lnn)*y/nb*n=>
max; <y i B (Lpo1yn-1/2<x,<pn-1/2 — T —12)2,
When using v > 1, the covariance inequality, and

—-1/2
Bl in-tagxseptiz S0

the above is easily shown to be bounded by
Const.(Inn)*yv/nb?n~2(nPn~% 4+ npv+)

for 1 < P < n. (For verification of this one may employ the argument used in
the proof of Lemma 3.2.) Then P could be chosen as P = n'/(?), and the last
expression is

< Const.(Inn)*v/nb?n~2nl/2+1/(2) = Const.(Inn)ip?n=1+1/(2) (3.11)

which converges to zero by the assumption on the size of b, (i.e., we need u <
1/2 — 1/(4v) < 1/2). Notice that an application of Lemma 3.3 (formulae (3.3)
yields II,, — 0 in probability. In order to handle IV, we proceed as Radulovié
(1998) did. Indeed according to Radulovié¢ (1998), it suffices to show the following:

”b_1/2 Zb: [(l(r—l)n—l/zﬁXiSrn—l/z - rn‘_llz)—*_(l(17—-1)11.*1/2SXiSP"_l/2 - n_l/z):l Iz
i=1

< en”° for some ¢

provided v > 1. The last expression holds by moment bounds derived in (3.11).
Therefore IV,, = 0 in probability. This proves Lemma, 3.4.
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Proof: (Proof of the main result) Here we just brief the proof. Detailed
may be found in Radulovié (1998). First it will be assumed that the sequence X;
is uniformly distributed on [0, 1], which can be relaxed in a routine manner as in
Billingsley (1968) pg. 197.

It is well known that proof of Theorem 2.1 will follow if one establishes finite
dimensional convergence and stochastic equicontinuity of the process (2.2), con-
nditionally in probability (see, e.g., Billingsley (1968) pg. 123.) To establish this,
in a view of definition (2.6) it is sufficient to show that for every subsequence 7y
there exists a furthur subsequence ny and a set C C Q, P(C) = 1, such that:
a)for every w € C and for every finite collection ti1y... ,tia € [0,1]

* * D
(anl(le),... ’Z"'kz(Tj )) = (Gp(tjl),... ,Gp(tjd)) (3.12)
b)for every w € C and every 7 > 0

lim limsup P*( sup |Z

60 400 |t—s]<d

o (t:8)] > 1) =0. (3.13)

Before going furthur, it is worthwhile to mention that the bootstrap CLT here
reduces to an relaxed uniform law of large numbers (ULL). Indeed it is sufficient
for the ULL to hold along n~¢—nets (whose cardinality is a bounded function of
n) and for all A = f — g such that || f — g [|,< n~° for some p,d > 0 (here, the
cardinality is infinite but we have the control over the size h). This relaxation of
the ULL is a key point in Radulovié¢ (1998) and Shao and Yu (1996) because it
enables us to prove our result by using some standard techniques from empirical
process theory.

First observe that (3.12) is established because it reduces to the MBB CLT for
the mean (see also Radulovié (1996a)). To prove (3.13), we need to prove claims
2 and 3 of Radulovié(1996b)which basically follow from our Lemma 3.4 with
some necessary modifications. Indeed by considering the untruncated f; instead
fslren, || - |l instead of || - ||, letting o, = n~'/3% instead of o, = (Inn)~3/2
in claims 2 and 3 of Radulovié¢ (1996b), we can obtain the following. For every
subsequence ny there exists a furthur subsequence ng (we will call it n') such
that

P*( sup [Zy(t,8)| >7)=P*(  sup  |Zw(fe, f5)| > 7).
[t—s|<d (lfe—fallg<a?/?

< 20(8,n') +2P*(sup | Zu (fs, fo,| > 7/3) = I, + 11,
fteF

where ®(4,n) is a real function such that lims_,o lim, 0 ®(6,n) = 0 and f,_ is
such that || ft — fa, llo< an = n~1/3%. Now observing that the class of functions
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F is obviously Vapnik-Chervenkis (see Dudley (1978)), we have I}, converging
to 0 as n' tends to infinity. See Radulovié¢ (1996b) and Radulovié¢ (1998) for its
detailed arguments. This proves Theorem 2.1. (|
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